Читаем О происхождении времени. Последняя теория Стивена Хокинга полностью

Экспериментальное открытие гравитационных волн подтвердило последнее из великих предсказаний общей теории относительности. Во многих отношениях это событие отмечает вступление теории в пору зрелости – им ознаменовано как завершение одной эры, так и начало другой. Начавшись с абстрактных математических уравнений, описывающих пространство, время и тяготение, с открытием гравитационных волн эта теория превратилась в совершенно новый способ видения Вселенной. Больше чем через четыреста лет после того, как Галилей впервые направил телескоп на звезды, у астрономов как будто появился новый орган чувств, который позволяет им видеть темную сторону Вселенной, – в ней доминируют черные дыры, темная материя и темная энергия. Работающие теперь в разных точках Земли гравитационно-волновые обсерватории исследуют космос, улавливая мельчайшие вибрации геометрии самого пространства-времени – поля, которое Эйнштейн впервые описал более столетия назад.

Еще на заре эры общей относительности Эйнштейн быстро понял, что его теория может дать радикально новое видение космоса как целого. В 1917 году он писал известному голландскому астроному из Лейдена Виллему де Ситтеру: «Я хочу решить вопрос о том, можно ли развить основную идею относительности до ее окончательного вывода и определить форму Вселенной как целого»[44].

Эйнштейн предложил считать глобальную форму пространства чем-то вроде трехмерной версии поверхности сферы – так называемой гиперсферой. Вообразить гиперсферу трудно – мы ведь обычно думаем об искривленных пространствах как о двумерных поверхностях, погруженных в обычное трехмерное Евклидово пространство. Но такое погружение поверхности в пространство с большим числом измерений – всего лишь уступка нашему зрительному опыту. Математики XIX века уже показали к тому времени, что все геометрические свойства искривленной поверхности – вроде прямых линий, углов и тому подобного – могут быть определены в пределах этой поверхности, без обращения к чему-то, что находится выше или ниже нее[45]. Подобным же образом описание искривленной формы трехмерной гиперсферы не нуждается ни в какой внешней опорной точке. Гиперсфера – это просто гиперсфера.

Как и у поверхности сферы, у трехмерной гиперсферы нет ни центра, ни границы. В какой бы точке гиперсферы вы ни находились, пространство выглядит одинаково. Однако общий объем пространства в эйнштейновской вселенной конечен. Это значит, что так же, как конечна поверхность Земли, ограниченно и количество различных мест в гиперсферической вселенной. Если в эйнштейновской вселенной вы будете двигаться по прямой, в конце концов вы вернетесь в точку отправления со стороны, противоположной той, в которую когда-то отправились, – точно так же, как, двигаясь всегда только прямо вперед, мы в конце концов обогнем Землю. Больше того, за время нашего путешествия ничего не изменится – эйнштейновская вселенная построена как неизменная во времени. Чтобы обеспечить такие ее свойства, Эйнштейн даже ввел в свои уравнения дополнительный член, названный им космологическим членом и обозначенный греческой буквой – сегодня мы называем его космологической постоянной[46]. λ-член Эйнштейна описывает темную энергию пространства, которая проявляется во Вселенной на самых больших масштабах, – что-то вроде антигравитации или космического отталкивания. Эйнштейн увидел, что для гиперсферы некоторого определенного размера притяжение всего вещества и отталкивание, вызванное λ-членом, могут идеально уравновешиваться, – такая Вселенная не расширяется, не сжимается и существует в вечном прошлом и вечном будущем. Это и была Вселенная, какой он ее себе представлял, и единственная, как он думал, согласующаяся с глубоким физическим смыслом его теории.

Эйнштейновское видение космоса, которое позволяло описывать всю Вселенную единым уравнением, ясно показало, что общая теория относительности может привести нас туда, куда законам Ньютона путь был закрыт. В рамках статического гиперсферического пространства-времени общая форма и размеры Вселенной связаны с содержащимся в ней количеством материи и темной энергии. Это значило, что общая теория относительности действительно способна дать фантастические ответы на древние вопросы. Своей трактовкой Вселенной как целого Эйнштейн в некотором смысле прочно вписал «внешнюю сферу» моделей Вселенной древнего мира в рамки современной науки. И хотя модель Вселенной Эйнштейна оказалась и близко не соответствующей действительности, его пионерские исследования обозначили момент рождения современной релятивистской космологии.

Однако пройдет еще десять лет, прежде чем Леметр начнет понимать, насколько истинное космологическое значение теории относительности выходит за пределы первоначальных представлений Эйнштейна и всех остальных.

Перейти на страницу:

Похожие книги

Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература