Читаем О происхождении времени. Последняя теория Стивена Хокинга полностью

В 1929 году Хаббл, в чьем распоряжении по-прежнему был самый мощный в мире телескоп на Маунт-Вилсон, получил сильное эмпирическое подтверждение линейной зависимости между расстоянием до галактики и ее лучевой скоростью. Доказательство было настолько убедительным, что эта зависимость – уравнение (23) в статье Леметра 1927 года – даже была названа законом Хаббла[62], невзирая на то, что Хаббл вообще не упоминал ни о каком расширении Вселенной и до самой смерти не верил в релятивистскую интерпретацию его наблюдений[63]. Тем не менее надо признать, что выполненная им работа была настоящим чудом наблюдательского мастерства. Хабблу помогал Милтон Хьюмасон, бывший погонщик мулов, один из последних астрономов, пришедших в профессию, не имея университетского диплома. Он прилагал поистине героические усилия, чтобы улавливать слабые потоки света от далеких туманностей и определять их красные смещения. Говорили, что на измерение спектра одной-единственной туманности у Хьюмасона уходило три полные ночи тщательнейших наблюдений.

Великолепные наблюдения галактик, выполненные Хабблом и Хьюмасоном, стали переломным моментом в релятивистской космологии. Эддингтон, которому напомнили о статье Леметра 1927 года, распорядился, чтобы английский перевод этой статьи был немедленно напечатан в «Ежемесячных известиях Королевского общества» (Monthly Notices of the Royal Society), и организовал заседание Королевского Общества для обсуждения вопроса. Перед лицом неопровержимых астрономических доказательств Эйнштейн тоже признал, что был неправ. Он резко изменил свою позицию и принял концепцию расширяющейся Вселенной. При этом ему пришлось устранить из уравнений λ-член, который он когда-то специально ввел для обеспечения стационарности Вселенной. Он говорил, что ему никогда не нравился этот член, казавшийся ему грубо нарушающим математическую красоту его теории. О новой, освобожденной от бремени λ-члена и усовершенствованной теории Эйнштейн писал американскому астроному Ричарду Толмэну: «Она действительно стала несравненно более удовлетворительной»[64].

Как ни парадоксально, у Леметра было совершенно иное мнение: он считал, что λ-член Эйнштейна блестяще дополнял его теорию и нужен был, конечно, не для того, чтобы сконструировать статическую Вселенную (такой была мотивация Эйнштейна), а чтобы учитывать энергию, связанную с пустым пространством. В этом с Леметром соглашался Эддингтон, который как-то раз заявил: «Я бы скорее вернулся к теории Ньютона, чем отказался бы от космологической постоянной»[65]. В то время как Эйнштейн добавлял λ-член к левой части своего уравнения, объясняя это геометрическими соображениями, Эддингтон и Леметр рассматривали его как элемент энергетического бюджета Вселенной, за который отвечала правая часть. Если пространство-время есть физическое поле, рассуждали они, разве не должны мы рассчитывать, что оно обладает своими собственными внутренне присущими ему свойствами? Именно это и делает космологическая постоянная: обеспечивает пространство-время энергией и давлением. Так же, как кружка молока содержит определенное количество энергии, измеряемой посредством температуры, λ-член наполняет оказавшееся бы в противном случае пустым пространство «темной энергией» и «темным давлением», количество которых и дается численным значением постоянной. «С λ-членом все обстоит так, как будто энергия вакуума отличалась бы от нуля», – писал Леметр[66].

Антигравитационное действие космологической постоянной возникает из-за того, что давление, которым она наполняет пространство, отрицательно. В отрицательном давлении нет ничего особенно экзотического – это то, что мы часто называем натяжением, как у растянутой резиновой ленты. Отрицательное давление в эйнштейновской теории производит «отрицательное тяготение», или антигравитацию, которая ускоряет расширение пространства.

Перейти на страницу:

Похожие книги

Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература