Читаем О связи хаббловой и гравитационной постоянных (СИ) полностью

И пройдёмся ещё раз по корелляции с Эйнштейном, в силу принципиальности вопроса. В отличии от Эйнштейна, у нас не искривлённость всего пространства в районе взятого мат. тела, а нечто вроде круговой скособоченности лишь новоприбывшего пространства в том районе. В смысле, что круговую деформацию тем телом прибывания пространства при желании можно понятийно приравнять к такой скособоченности. Скособоченность то получается постоянная, но виртуальная, поскольку работает следующая "механика": новоприбывшее пространство сразу же "сливается" с имеющимся, тем автоматически теряя кособокость себя как новоприбывшего целого, задававшуюся характером его прибывания, однако кособокое прибывание, как ни в чём не бывало, продолжается - оно непрерывность, на смену "слившемуся" новоприбывшему неизменно ставящая точно такое же, отчего "сливаемость" никак не может до конца победить прибываемость - в её "круговой кособокости", а мы - из-за отсутствия этого "до конца" - имеем теоретизационное право говорить хотя бы о виртуальной кособокости свежеприбывшего пространства. О ней как круговой постоянке с центром в лице всякого мат. тела. Такое пространственное статус-кво, связанное с пробным мат. телом, может быть названо квазиискривлённостью пространства телом (что означает возможность смоделировать то статус-кво искривлённостью пространства в районе того тела). Может быть названо так при факте имеемости пространством некой общей кривизны - уже настоящей, а не модельной. Общей кривизны, за счёт которой оно "свёрнуто" в суперсферу с неким очень большим радиусом (а корректнее бы говорить - квазирадиусом, ибо за этой "сферой" - неизвестно что, если вообще что-то).

Новое пространство просачивается сразу по всему объёму нашего мира. В выступаемости, таким образом, того объёма некой суперплоскостью. И вот, при желании позволительно говорить о квазиискривлённости этой суперплоскости в районе всякого мат. тела. Я недаром заговорил о плоскости и искривлении. Представьте обычную плоскость, сквозь которую к вам что-то притекает - всегда перпендикулярно ей. Затем в эту плоскость вставлен задерживатель того чего-то - экран тому притеканию, экран некой конечной площади. Так вот хитрость в том, что в описаниях и расчётах последствий можно "не замечать" тот экран! Вести себя так, словно его нет, взамен наделяя ту плоскость определённой искривлённостью в месте экрана. Такой, чтоб то притекающее, проходя сквозь те искривлённые участки, не попадало в область прямо за экраном. Ну, меньше попадало. Результат расчёта тогда будет тот же, что и в адекватном случае, когда учитывается экран в его площадности. Будет, если правильно подобрать ту имитирующую экран искривлённость плоскости. Правильно, то бишь, имитировать экран складками плоскости, в которой он расположен! Нечто такое и проделал Эйнштейн, сам не понимая, что именно это делает.

Нечто такое, но не напрямую то же, однако. Поскольку в вопросе гравитации всё аналогизируется несколько иначе, чем в разобранном примере. Главный отличительный момент: из того, что за условной плоскостью, поступает материал самой плоскости! Ну, продлительность её, прибавки к ней, её расширяющие, - если говорить обезличенно. А нечто в плоскости - как инородная часть её - затрудняет эту прибавляемость (речь об условно уплостившемся мат. теле, как ясно). Но и здесь можно "не замечать" такого экрана, а заодно и квазипотоки плоскости, что порождаются "избытком" её как поверхности в одних своих участках при "недостатке" в других, когда "избыток" и "недостаток" эти есть плод работы экрана. Можно, специально для расчёта выдумывая изгибаемости плоскости в окрестностях экрана и имитируя ими сказываемость течения её как поверхности на "встроенных" в неё инородных частях. Ну, проделанное с ними течением - заменять сказываемостью на них плоскостного изгиба: "встроенная" в плоскость инородная часть не может ведь сойти с неё как поверхности, а потому вынуждена бывает идти в изгиб и, проходя его, двигаться по отношению к экрану иначе, чем получилось бы у ней без того изгиба. Иначе, причём именно так, как двигалась бы под действием порождённого экраном квазитечения поверхности. Вот такая зарисовка уже на ступень ближе к тому, что проделал Эйнштейн в ОТО.

Перейти на страницу:

Похожие книги

Повседневная жизнь российских космонавтов
Повседневная жизнь российских космонавтов

Книга, представленная на суд читателя в год пятидесятилетнего юбилея первого полета человека в космос, совершенного Ю. А. Гагариным, — не взгляд со стороны. Ее автор — удивительно разносторонний человек. Герой Российской Федерации, летчик-космонавт Ю. М. Батурин хорошо известен также как ученый и журналист. Но главное — он сам прекрасно знает увлекательный и героический мир, о котором пишет, жил в нем с середины 1990-х годов до 2009 года.Книга, рассчитанная на широкий круг читателей, не только познавательна. Она поднимает острые вопросы, от решения которых зависит дальнейшая судьба отечественной космонавтики. Есть ли еще у России шансы преодолеть ухабы на пути к звездам или все лучшее осталось в прошлом? Прочитав книгу, вы сами сможете судить об этом.Большинство цветных фотографий сделано автором в ходе тренировок и в космических полетах.

Юрий Михайлович Батурин

Астрономия и Космос / История / Образование и наука
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия

Известный физик-теоретик, доктор философии и популяризатор науки дает собственный прогноз о нашем будущем. Автор этой книги уверен: совсем скоро людям придется покинуть родную планету и отправиться в космос. Потому что грядет глобальный кризис, несущий угрозу всему живому на Земле…По мнению Митио Каку, людям предстоит стать «двухпланетным видом», как когда-то метко выразился астрофизик Карл Саган. В этой книге ученый рассматривает проблемы, ждущие нас во время освоения космоса, а также возможные пути их решения.Вы узнаете, как планируется колонизировать Марс, что уже сделано для покорения этой планеты, прочтете о новейших достижениях в сфере строительства звездолетов. Ознакомитесь с прогнозом ученого о том, могут ли люди обрести бессмертие. Откроете, как в научном мире относятся к возможности существования внеземных цивилизаций. И вместе с автором поразмышляете над тем, что произойдет, когда человечество сможет выйти за пределы Вселенной…

Митио Каку , Мичио Каку

Астрономия и Космос / Педагогика / Образование и наука
Двенадцатый космонавт
Двенадцатый космонавт

Георгий Тимофеевич Береговой… Человек, знакомый миллионам людей и пользовавшийся большим и заслуженным авторитетом. Летчик-фронтовик, совершивший 186 боевых вылетов, награжденный многими орденами и медалями, Герой Советского Союза, «мастер штурмовых атак». Заслуженный летчик-испытатель СССР, давший путевку в небо многим десяткам крылатых машин, один из лучший испытателей Советского Союза периода 50-х – 60-х годов прошлого века, знаменитый «король штопора». Летчик-космонавт СССР, получивший звание дважды Герой Советского Союза за испытательный полет на космическом корабле «Союз-3» в октябре 1968 года, – за полет, который фактически открыл дорогу в космос целому поколению космических кораблей «Союз», «СоюзТ», «СоюзТМ», орбитальным станциям «Салют» и «Алмаз», орбитальному комплексу «Мир».  

Сергей Чебаненко

Публицистика / Астрономия и Космос / История