Читаем Об ИИ без мифов. Путеводитель по истории Искусственного Интеллекта полностью

К создание летательных аппаратов тяжелее воздуха приложили руку не только братья Райт, оно стало возможным благодаря успехам в нескольких областях, прежде всего, в появлении легких двигателей внутреннего сгорания и в успехах в изучении основ аэродинамики крыла. Примерно то же самое можно сказать о современных достижениях в области ANI. Подчеркнем, только лишь ANI без каких-либо проекций в будущее на AGI и тем более на ASI. Нынешний взрыв ANI вызвала синергия трех факторов: первый – достижения в работе с большими данными, второй – успехи в области глубокого машинного обучения, и третий – адаптация для процессов обучения ускорителей на графических процессорах GPU.

В данном случае на роли братьев Райт жребий выбрал трех профессоров – Фей-Фей Ли, Джефри Хинтона и Эндрю Ына, каждый из них внес свою лепту в становление этих трех научно-технических направлений. Стоит сказать, что на их месте могли бы оказаться любые другие ученые, все это игра случая, существенно то, что сложились необходимые предпосылки, а кому что досталась не столь важно.

• Профессору Фей-Фей Ли из Стэнфордского университета принадлежит идея использования машинного обучения для извлечения полезной информации из больших объемов данных. В своих экспериментах она использовала базу данных аннотированных изображений ImageNet. Большинство коллег применяли для подобных задач традиционные модели и алгоритмы AI, но Фей-Фей Ли решила нарушить традицию и применить для отработки и распознавания образов мало востребованные к тому времени методы машинного обучения.

• Из всех существовавших методов машинного обучения наилучшие результаты показали методы глубокого обучения, разработанные группой математиков из Университета Торонто, возглавляемой профессором Джефри Хинтоном.

• Универсальные компьютеры оказались слишком медленны для решения задач обучения, выход нашел работавший в Стэнфорде профессор Эндрю Ын. Он предложил использовать графические процессоры GPU для моделирования ANN.

Так возникла технологическая триада, являющаяся базисом современного AI – большие данные, машинное обучение и GPU. Она является альтернативой двум компонентами действующей компьютерной парадигмы, состоящей из программирования и фон-неймановских компьютеров (CPU). Обучение на больших данных заменяет программирование, что же касается GPU, то сегодняшний день кластеры из эти процессоров, ядра которых остаются фон-неймановскими, позволяют создать обучаемую, а не программируемую инфраструктуру. Этот путь создания тела для AI далеко не совершенен, но действующей альтернативы нет, ведутся активные исследования и разработки иных нежели GPU процессоров, но они пока на уровне экспериментов.

Нынешнюю волну AI нередко называют третьей, это так, но надо отдавать себе отчет, что это лишь порядковый номер, ни теоретически, ни технологически эта волна никак не связана с предшествующими. Представленная выше группа весьма харизматичных ученых оказалась в центре внимания масс-медиа, однако необходимые и достаточные условия для возникновения этой волны ANI были созданы более широким научным сообществом.

<p>Новые скептики</p>

Подъем интереса к AI немедленно вызвал обратную волну, с критикой выступили люди, далекие от понимания сути происходящего. Неизгладимое впечатление на общественность произвел ныне покойный британский физик и космолог Стивен Хокинг, заявивший в 2017 году: «Развитие искусственного интеллекта может стать как наиболее позитивным, так и самым страшным фактором для человечества. Мы должны осознавать опасность, которую он несет». Хокинг выразил опасения относительно того, что новейшие технологии могут привести к деградации человека, сделав его беспомощным перед лицом природы, что в условиях естественной эволюции и борьбы за выживание означает верную гибель.

Среди тех, кто добросовестно заблуждается и выступают в прессе, не имея серьезного представления об AI, есть и вполне достойные люди, например, великий дипломат Генри Киссинджер. Его статья с эпохальным на первый взгляд названием «Конец Эпоха просвещения» (How the Enlightenment Ends) опубликована не где-нибудь, а в журнале The Atlantic.

Квинтэссенция позиции Киссинджера такова: «Просвещение началось с философских размышлений, которые распространялись с помощью новой технологии. Мы движемся по противоположному пути. Разработана потенциально доминирующая технология AI, которая нуждается в направляющей философии. Но разработкой таковой никто даже не занимается». Статья завершается выводом: «Создатели AI, некомпетентны в политике и философии, точно так же, как я в сфере технологий, поэтому они должны задаться вопросами, которые я поднял в этой статье, чтобы встроить ответы в свои инженерные разработки. Правительству США стоит подумать о создании президентской комиссии из признанных экспертов-мыслителей, которые помогут разработать национальный подход. Очевидно одно: если мы не начнем эту работу в ближайшее время, очень скоро мы поймем, что уже опоздали».

Перейти на страницу:

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Светлые века. Путешествие в мир средневековой науки
Светлые века. Путешествие в мир средневековой науки

Средние века были не только временем бесконечных войн и эпидемий, но и эпохой научных открытий и бескорыстного стремления к знанию. Средневековые мыслители и практики исследовали окружающий мир, основали первые университеты, изобрели механические часы и приборы для наблюдения за небесными светилами.В этой книге нашим проводником в мир средневековой науки станет реальный человек, монах по имени Джон Вествик, живший в XIV веке и получивший образование в крупнейшем монастыре Англии. Увлекательная история его научных трудов позволила автору показать не парадный мир звездных имен и открытий, а атмосферу научного поиска того времени, представить идеи и достижения безымянного большинства людей с научным складом ума, так часто ускользающие от внимания историков. Путешествуя с братом Джоном по Британии и за ее пределами, мы встретим любопытных персонажей тех лет: английского аббата-часовщика, французского ремесленника, ставшего шпионом, персидского эрудита, основавшего самую передовую обсерваторию в мире. Узнаем, как эти люди ориентировались по звездам, умножали римские цифры, лечили болезни и определяли время с помощью астролябии, и пересмотрим отношение к Средневековью как к темным временам.

Себ Фальк

История техники