Читаем Об ИИ без мифов. Путеводитель по истории Искусственного Интеллекта полностью

Возникают естественные вопросы: «Что задержало развитие машинного обучения как базиса для AI на несколько десятилетий? Почему оно уступило свое место символьному подходу, чтобы потом возродиться и практически полностью его вытеснить?» Ответ довольно прост, он обращает нас в проблеме «mind and body» (тела и души) – машинному обучению нужно тело, нужна система параллельной распределенной обработки данных (Parallel Distributed Processing, PDP), что принципиально невозможно на компьютерах, построенных по фон-неймановской схеме, вполне удовлетворяющей требованиям символического подхода. Как только открылась технологическая возможность материализации альтернативного символическому коннекционистского подхода машинное обучение расцвело бурным цветом.

Персептрон Розенблатта

Первым человеком, попытавшимся доступными ему скудными техническими средствами преодолеть барьер современного ему компьютинга и реализовать какое-то подобие PDP, был Фрэнк Розенблатт. Он ввел понятие персептрон (от латинского perceptio – восприятие) для математической или компьютерной модели восприятия информации мозгом. С тех пор представление о персептроне заметно изменилось, в современных учебниках и энциклопедиях персептрон трактуется и как математическая или кибернетическая модель восприятия информации мозгом, и как виртуальное устройство, состоящее из элементов трех типов: датчиков (тип S), передающих сигналы ассоциативным элементам (тип A) и далее реагирующим элементам (тип R). Собранные в группу такие устройства способны к восприятию (перцепции) в частном случае зрительных образов. Трактовок так много, что появляются статьи с называниями What the Hell (или Heck) is Perceptron?, что можно перевести как «Что за хреновина это персептрон?» Скорее всего, потому, что персептроном можно назвать и модель отдельного нейрона, и нейронную сеть, состоящую из группы нейронов, и стек простых нейронов, образующих многоуровневый персептрон (Multi-Layer Perceptron) и сеть из таких более сложных нейронов. Они объединены способностью к перцепции.

Можно обнаружить огромное множество статей, где в деталях разбирается работа именно той конкретной модели нейрона, которую предложил Розенблатт, анализируется ее возможности и недостатки, хотя сегодня устройство этой модели не имеет большого значения. К работе Розенблатта стоит отнестись примерно так, как к изобретенному Николаусом Отто двигателю внутреннего сгорания. В наше время лишено смысла проводить детальный анализ этого примитивного по современным представлениям двигателя конца XIX века, достаточно знать, что на нем поехал первый автомобиль Даймлера и Бенца, в этом его историческая миссия, с него начитаюсь автомобилизация. То же самое относится к персептрону Розенблатта, по объективным причинам он остался в прошлом, однако сыграл точно такую роль пускового механизма, как двигатель Отто.

Но сам Розенблатт отнесся к нему иначе, он рассматривал персептрон не просто как модель мозга, наделял его большими возможностями, он писал о нем как «первой машине, способной к собственным идеям». Основанием для этого смелого утверждения был удачный эксперимент, результаты которого стали достоянием гласности в июле 1956 года, точно в то же время, когда проводился Дартмутский семинар. Программная модель персептрона была загружена в один из первых серийных мэйнфреймов IBM 704, построенных на лампах, с памятью на линиях задержки, еще даже не с ферритовой. Эксперимент проводился в военно-морской лаборатории Корнельского университета. Эта программа сортировала вводимую колоду перфокарт, деля ее на две с разными кодами перфорации. Программа обладала способностью к обучению и через пятьдесят проходов смогла выполнять задание безошибочно. Скромность результата не помешала Розенблатту сделать в статье «Проектирование умных автоматонов» (The Design of an Intelligent Automaton) следующее амбициозное заявление: «Истории о создании машин с человеческими способностями много лет волновали писателей-фантастов, но теперь мы становимся свидетелями рождения таких машин – машин, способных воспринимать, распознавать и идентифицировать окружающее без вмешательства человека в процесс обучения». Удивительно похоже на ленинское «Революция, о необходимости которой все время говорили большевики, совершилась».

Перейти на страницу:

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники