Читаем Об ИИ без мифов. Путеводитель по истории Искусственного Интеллекта полностью

В большинстве из них на первой позиции лидер мэйнстрима Джеффри Хинтон, он абсолютный лидер, но на втором или на третьем стоит профессор Майкл Джордан, иногда он опережает Лекуна и Бенджо. Джордан преподает в университета Беркли, он обладает колоссальным научным авторитетом. В списках наиболее влиятельных ученых в Computer Science, составляемом журналом Science или порталом Guide2Research, Майкл Джордан существенно опережает Хинтона и других членов канадского ганга. С начала 80-х он разрабатывал когнитивные модели, основанные на рекуррентных нейронных сетях. Будучи статистиком, Джордан способствовал внедрению в машинное обучение байесовских сетей, представляющих собой множество переменных и их вероятностных зависимостей по Байесу.

В качестве постоянного оппонента Хинтону выступает немецко-швейцарский ученый Юрген Шмидхубер, профессор в Университете Лугано. В 1997 году Шмидхубер вместе со своим научным руководителем Сепплом Хохрайтером опубликовали статью Long short-term memory с описанием варианта рекуррентной нейронной сети (RNN), который они на несколько лет раннее назвали «Долгая краткосрочная память» (LSTM). Такое, на первый взгляд, нелогичное название не игра слов, оно имеет глубокие корни, идущие из психологии, где память делят на долговременную (long-term) и кратковременную рабочую (short-term). При объединении двух типов памяти в одной LSTM программа извлекает из short-term структуры, используемые для долговременного запоминания. Этот подход делает LSTM удобным для работы с последовательными данными, например текстами на естественных языках.

Более глубоким идейным оппонентом мэйнстриму является Хаим Самполинский, профессор Еврейского университета в Иерусалиме и профессор Гарвардского университета. Он автор множества работ, но наиболее доступно его позиция изложена вы статье «Глубокое обучение и альтернативные обучающие стратегии при ретроспективном анализе реальных клинических данных» (Deep learning and alternative learning strategies for retrospective real-world clinical data), написанной в соавторстве с коллегами. В ней признается, что в последние годы сочетание достижений в области машинного обучения в сочетании с доступной и недорогой электроникой позволили автоматизировать решение целого ряда сложных когнитивных задач.

<p>Трансферное обучение</p>

Всё нынешнее глубокое обучение относится к категории обучения с учителем (supervised DL), ставшего новой классикой. Оно обладает несколькими врожденными недостатками. По определению для него требуются чрезвычайно большие объемы данных на этапе обучения и соответственно большие вычислительные мощности. В ряде случаев требуется такая вычислительная мощность, что решение сопряженно с существенными энергетическими затратами, но полученная при этом модель способна решать только одну задачу, что снижает эффективность. То есть модель, обученная для решения одной задачи настолько специальна, что не может быть полезной для решения другой задачи, для нового решения потребуются новые данные для обучения и новые затраты на обучение. Избавлением от этого врожденного недостатка станет модифицированный тип DL, который получил название transfer learning (TL), его можно перевести как «обучение с переносом», но чаще используют кальку английского термина «трансферное обучение». TL отличается тем, что «знание», полученное при тренировке модели, сохраняется для последующего повторного использования, чем напоминает обучение человека, с той разницей, что машинное знание не имеет ничего общего с человеческим, оно не может служить источником для самостоятельной деятельности. Знание в данном случае сводится к возможности полного или частичного использования ранее обученной модели для решения новой задачи. TL повышает эффективность DL при условии родственности решаемых задач. Если модель обучена на распознавание кошек, то она окажется бесполезной для распознавания собак.

Общие идеи относительно возможностей TL и сам термин предложила известная специалист в этой области Лорин Пратт еще в 1993 году, но путевку в жизнь этому направлению в DL дал Эндрю Ын в своем ставшем широко известным выступлении на конференции Neural Information Processing Systems (NIPS) 2016. По его мнению, TL должно стать следующим стимулом для коммерческого успеха после обучения с учителем.

На данный момент видится несколько стратегий внедрения TL. Это может быть прямое использование заранее обученной модели (pre-trained models) для определенной области приложений, например NLP. Пользователям уже доступны такие специализированные как BERT, YOLO, GloVe, UnsupervisedMT и другие. Или же можно тем или иным способом воспользоваться обученной моделью для частичного экстрагирования сведений из ранее натренированного набора данных с тем, чтобы потом перенести их другую модель.

<p>Генеративно-состязательные сети</p>
Перейти на страницу:

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Светлые века. Путешествие в мир средневековой науки
Светлые века. Путешествие в мир средневековой науки

Средние века были не только временем бесконечных войн и эпидемий, но и эпохой научных открытий и бескорыстного стремления к знанию. Средневековые мыслители и практики исследовали окружающий мир, основали первые университеты, изобрели механические часы и приборы для наблюдения за небесными светилами.В этой книге нашим проводником в мир средневековой науки станет реальный человек, монах по имени Джон Вествик, живший в XIV веке и получивший образование в крупнейшем монастыре Англии. Увлекательная история его научных трудов позволила автору показать не парадный мир звездных имен и открытий, а атмосферу научного поиска того времени, представить идеи и достижения безымянного большинства людей с научным складом ума, так часто ускользающие от внимания историков. Путешествуя с братом Джоном по Британии и за ее пределами, мы встретим любопытных персонажей тех лет: английского аббата-часовщика, французского ремесленника, ставшего шпионом, персидского эрудита, основавшего самую передовую обсерваторию в мире. Узнаем, как эти люди ориентировались по звездам, умножали римские цифры, лечили болезни и определяли время с помощью астролябии, и пересмотрим отношение к Средневековью как к темным временам.

Себ Фальк

История техники