Простейшие нейронные сети были предназначены для обработки статических данных, в них не была задействована обратная связь, и они не имели ничего общего с живым мозгом. Типичный пример нейронной сети – сеть с прямой передачей сигнала, в которой элементы выхода транслируют сигнал об ошибке, и этот сигнал подается на элементы входа. Может показаться, что трансляция ошибок является обратной связью, но на самом деле это не так. Обратная трансляция ошибок происходила только на стадии обучения, а в процессе собственно функционирования нейронной сети потоки информации всегда передавались одним и тем же способом. Никакой обратной связи между элементами входа и выхода не наблюдалось. Кроме того, модель не учитывала временной фактор. Статические входящие сигналы превращались в статические исходящие сигналы – и ничего более. Потом подавался следующий сигнал, и все повторялось сначала. Нейронная сеть не сохраняла никаких данных о произошедших событиях, даже о тех, что случились совсем недавно. Структура нейронных сетей не шла ни в какое сравнение со сложным иерархическим строением человеческого мозга.
Я рассчитывал, что разработчики нейронных сетей в будущем перейдут от простых моделей к более совершенным и реалистичным, однако этого не произошло. Складывалось впечатление, что из-за подтвержденной функциональности простейших нейронных сетей все исследователи на долгие годы готовы остановиться на достигнутом уровне. Был найден новый и очень занятный инструмент; тысячи ученых, инженеров и студентов получали гранты, защищали диссертации, издавали книги о нейронных сетях. При помощи нейронных сетей составлялись прогнозы для фондового рынка, проводилась обработка документации для кредитования, осуществлялись графологические экспертизы и сотни других операций. Кто знает, возможно цели изобретателей нейронных сетей были гораздо более широкими, но в конечном счете эту сферу оккупировали те, кто меньше всего интересовался пониманием работы мозга и устройством человеческого разума.
Различия между нейронными сетями и работой мозга вопиющим образом нивелировались средствами массовой информации. В газетах, журналах, научных телепередачах нейронные сети называли «подобными мозгу человека» или «функционирующими совершенно по такому же принципу, что и человеческий мозг». В отличие от программируемого искусственного интеллекта нейронные сети обучались на примерах, и на основании этого их считали носителями разума. В качестве наиболее яркого примера могу привести NetTalk – нейронную сеть, способную переводить последовательности буквенных символов в звуки человеческой речи. Обученная работать с печатным текстом, нейронная сеть обрела компьютерный голос, читающий слова, и в федеральных новостях ее тут же окрестили «читающей машиной». В действительности механизм ее действия очень прост: она соотносит буквенные комбинации с предопределенными речевыми сигналами.
Попробую объяснить, используя аналогию, насколько далеки нейронные сети от настоящего мозга. Представьте себе, что, вместо того чтобы разбираться в работе мозга, мы решили исследовать цифровой компьютер. Потратив на это годы, мы придем к выводу, что компьютер состоит из сотен миллионов транзисторов, которые связаны между собой в очень точную и сложную схему. В то же время мы не поймем, ни как работает компьютер, ни почему транзисторы собраны именно в такую схему. И, если однажды мы соберем несколько транзисторов в одну схему, чтобы понять, как они работают, окажется, что три транзистора, собранные в определенную схему, преобразуются в усилитель. Слабый на одном конце сигнал многократно усиливается на другом. Такие усилители сейчас используются в радиоприемниках и телевизорах. Это важное открытие в свое время произвело фурор. Начался промышленный выпуск транзисторных радиоприемников, телевизоров и другой электроники с использованием усилителей транзисторного типа. Все это конечно, замечательно, но не вносит ясности в понимание устройства компьютера. Усилитель и компьютер состоят из транзисторов, но, тем не менее, у них нет практически ничего общего. Точно так же человеческий мозг и простейшая нейронная сеть состоят из нейронов – и это все, что их объединяет.