Публика, меж тем, была впечатлена продолжительным потоком кажущихся успехов и новостей об ИИ-технологии. Одной из программ, вызвавшей возбуждение публики, была программа решения математических теорем. Даже начиная с Платона, многошаговые дедуктивные умозаключения виделись вершиной человеческого интеллекта, так что наперво казалось, что ИИ сорвал куш. Но, подобно Блочному Миру, программа оказалась ограниченной. Она могла найти только очень простые теоремы, которые уже были известны. Затем были большие телодвижения насчет «экспертных систем», БД фактов, которые могли отвечать на вопросы, заданные человеком-пользователем. Например, медицинские экспертные системы могли диагностировать болезнь пациента по заданному списку симптомов. Но снова оказалось, что она имеет ограниченное применение и не проявляет чего-либо близкого к обобщенному интеллекту. Компьютеры могли играть в шашки на уровне эксперта и в конечном счете IBM-овский Deep Blue превосходно обыграл Гари Каспарова, мирового чемпиона по шахматам, в его собственной игре. Но эти успехи ушли впустую. Deep Blue выиграла не за счет ума; он выиграл за счет того, что был в миллионы раз быстрее, чем человек. У Deep Blue нет интуиции. Опытный игрок смотрит на позицию на доске и сразу видит, какие варианты игры наиболее выгодны или опасны, тогда как компьютер не имеет врожденного чувства того, что важно, и должен исследовать гораздо больше вариантов. У Deep Blue также нет ощущения истории игры, и он не знал ничего о своем оппоненте. Он играл в шахматы так и не поняв, что такое шахматы, аналогично этому калькулятор выполняет арифметические операции, но понятия не имеет о математике.
Во всех случаях ИИ-программы были хороши только в одной определенной области, для которой они были разработаны. Они не обобщали и не выказывали гибкости, и даже их создатели признавались, что их программы не мыслят подобно человеку. Некоторые ИИ-проблемы, которые изначально казались легкими, не добились прогресса. Даже сегодня ни один компьютер не понимает язык так же хорошо, как может трехлетний ребенок, и не видит даже так, как может мышь.
По истечение многих лет усилий, неосуществленных обещаний и несостоявшихся успехов, ИИ начал блекнуть. Ученые из этой области ушли в другие области исследований. Компании, завязанные на ИИ, оказались неудачными. Вложения стали скудными. Стало казаться невозможным запрограммировать компьютер, чтоб он выполнял даже наиболее базовые задачи восприятия, языка и поведения. Сегодня немногое изменилось. Как я уже сказал ранее, до сих пор есть люди, которые верят, что ИИ-проблемы могут быть решены более быстрыми компьютерами, но большинство ученых думают, что в целом такие попытки ущербны.
Мы не должны порицать пионеров ИИ за их неудачи. Алан Тьюринг был блестящим человеком. Все могли бы сказать, что Машина Тьюринга должна изменить мир — и она сделала это, правда не путем ИИ.
Мой скептицизм насчет притязаний ИИ был обострен примерно в то самое время, когда я подал заявление в MIT. Джон Серл, влиятельный профессор философии в Калифорнийском Университете в Беркли, в то время говорил, что компьютеры не были и не смогут быть интеллектуальными. Чтоб доказать это, в 1980 году он предложил мысленный эксперимент, называемый Китайской Комнатой. Это было примерно следующее:
Предположим, у вас есть комната с прорезью в одной из стен, и внутри находится англоговорящий человек, сидящий за столом. У него есть большая книга с инструкциями и все карандаши и бумага для черновиков, которые ему как-нибудь могли бы понадобиться. Перелистывая книгу, он видит, что инструкции, написанные на английском языке, указывают ему способы манипулирования, сортировки и сравнения китайских символов. Представим себе, что указания ничего не говорят о значении китайских символов; они только задают, как символы должны быть скопированы, стерты, переупорядочены, перекодированы, и т. д.
Кто-то снаружи просовывает кусочек бумаги через прорезь. На ней написан рассказ и вопросы по этому рассказу, все на китайском. Человек внутри не говорит и не читает ни слова по-китайски, но он берет бумажку и идет работать с книгой. Он трудится и трудится, следуя инструкциям в книге. В некоторых ситуациях инструкции говорят ему записывать символы на клочке бумаги, в других — перемещать и стирать символы. Применяя правило за правилом, записывая и стирая символы, человек работает до тех пор, пока инструкции из книги не скажут ему, что все готово. По окончании, наконец у него есть новая написанная им страница символов, которая без его ведома стала ответами на вопросы. Книга говорит ему передать эту бумагу через прорезь. Он делает это и удивляется, для чего было это утомительное упражнение.