«Эта теория кажется в настоящее время — в свете всестороннего критического обсуждения, а также жестких и изобретательных испытаний намного
Короче говоря, мы никогда не можем рационально оправдать теорию, то есть притязать на знание того, что она истинна, но мы можем, если нам повезет, рационально оправдать предпочтение одной из множества конкурирующих теорий — до поры до времени, то есть применительно к современному состоянию ее обсуждения. И наше оправдание, хотя это и не притязание на истинность теории, может быть притязанием на то, что на данной стадии обсуждения все указывает, что эта теория является
Рассмотрим теперь две конкурирующие гипотезы —
(1) c(h
1,d t) < c(h 2,d t)высказывание о том, что
На самом деле (1) — довольно неопределенное утверждение, хотя бы уже по той причине, что
Предположим, однако, идеальные обстоятельства. Предположим длительное обсуждение, которое привело к устойчивым результатам, в том числе к согласию по поводу всех компонентов имеющихся свидетельств, и предположим, что в течение достаточно длительного периода мнение, о котором идет речь, не менялось.
При таких обстоятельствах можно видеть, что в то время как входящие в
Это особенно ясно в случае, когда
(1) c(h
1,d t) < c(h 2,d t)сводится к высказыванию, что некоторое, точнее не определенное (unspecified) отрицательное число меньше, чем некоторое точнее не определенное положительное число, а такое высказывание вполне может быть охарактеризовано как «логическое» или «аналитическое».
Конечно, возможны и другие случаи, например, когда
Вместе с тем результат сравнения можно считать основанием для рационального предпочтения, только если он достаточно хорошо известен, то есть только если имеет место (1), мы можем сказать, что
Если (1) аналитично, то решение предпочесть гипотезу
Я не вполне уверен, но мне кажется, что нижеследующая формулировка суммирует ту критику, которая впервые была выдвинута профессором Сэлмоном против моей теории подкрепления: либо все описанные шаги аналитические — и тогда не существует синтетических научных предсказаний, либо некоторые шаги не могут быть аналитическими, а должны быть подлинно синтетическими, или расширительными (ampliative), а потому индуктивными.