Я полагаю, что наш «модифицированный эссенциализм» может помочь там, где возникает вопрос о логической форме законов природы. Он предполагает, что наши законы и наши теории должны быть
Тем не менее, похоже, что есть что-то вроде
Хорошо известно, что ньютоновой динамике удалось объединить земную физику Галилея с небесной физикой Кеплера. Часто говорят, что ньютонову динамику можно индуктивным путем вывести из законов Кеплера и Галилея, и утверждалось даже, что ее можно вывести из них строго дедуктивно[192]
. Но это не так: с логической точки зрения теория Ньютона, строго говоря, противоречит и теории Галилея, и теории Кеплера (хотя эти последние теории можно, конечно, получить как приближения к теории Ньютона, если у нас такая теория уже есть). По этой причине невозможно вывести теорию Ньютона ни из теории Кеплера, ни из теории Галилея, ни из них вместе, ни дедуктивно, ни индуктивно. Это следует из того, что ни дедуктивный, ни индуктивный вывод не могут приводить от непротиворечивых посылок к заключению, которое формально противоречит этим исходным посылкам.Я считаю это очень веским аргументом против индукции.
Теперь я вкратце укажу противоречия между теорией Ньютона и теориями его предшественников. Галилей утверждал, что брошенный камень или снаряд движется по параболе, за исключением случая вертикального падения, когда он движется по прямой с постоянным ускорением. (В ходе всего этого обсуждения мы пренебрегаем сопротивлением воздуха). С точки зрения теории Ньютона оба эти утверждения ложны по двум различным причинам. Первое ложно потому, что траектория снаряда, летящего на дальнюю дистанцию, такого как межконтинентальная ракета (запущенная вверх или горизонтально), даже приблизительно не является параболой, а будет эллиптической. Она становится близкой к параболе, только если общая дальность полета пренебрежимо мала по сравнению с земным радиусом. Это отметил сам Ньютон в своих "Principia", а также и в их упрощенном варианте — «Системе мира», где в качестве иллюстрации он использует рисунок, приведенный на этой странице.
Рисунок Ньютона иллюстрирует его высказывание, что если скорость снаряда, а вместе с ней и дальность полета, возрастает, он «в конце концов, выйдя за пределы Земли... уйдет в пространство, не касаясь ее» [193]
.Итак, пущенный на Земле снаряд движется не по параболе, а по эллипсу. Конечно, для достаточно коротких расстояний парабола дает очень хорошее приближение, но параболическую траекторию нельзя считать в строгом смысле выводимой из теории Ньютона, если только мы не добавим к ней фактически