Читаем Объектно-ориентированный анализ и проектирование с примерами приложений на С++ полностью

И для температурного датчика, и для датчика давления тренд может быть определен как вещественное число, изменяющееся в диапазоне от -1 до 1 и представляющее собой наклон графика изменений температуры и давления на некотором интервале времени [Значение 0 показывает, что температура или давление стабильно. Значение 0.1 указывает на небольшой рост, значение -0.3 соответствует резкому уменьшению. Значения, близкие к -1 и 1 намекают на природный катаклизм, выходящий за рамки тех сценариев, в которых наша система должна исправно работать]. Таким образом, к описанию двух вышеупомянутых классов можно добавить еще одну ответственность и соответствующую ей операцию:

Ответственности:

Определение тренда давления или температуры как наклона графика (в линейном приближении) изменения их значений за данный интервал времени.

Операции:

trend - тренд

Отметив сходство поведения обоих классов, разумно было бы создать общий суперкласс, ответственный за определение тренда. Назовем его TrendSensor.

Вообще говоря, подобная схема не является единственно возможной. Мы решили передать ответственность за определение тренда датчикам. Можно было бы создать внешний по отношению к датчикам класс, который бы периодически их опрашивал и вычислял тренд, но мы отвергли такой вариант, так как он неоправданно усложнил бы систему. Первоначальное описание классов температурного датчика и датчика давления уже подразумевало возможность вычисления тренда "своими силами", а выявив общность (организовав суперкласс TrendSensor), мы получили в результате простую и связную систему абстракций.

Абстракцию, соответствующую датчику влажности, можно определить следующим образом:

Имя:

HumiditySensor

Ответственность:

Поддержание информации о текущей влажности, выраженной в процентах от 0% до 100%.

Операции:

currentHumidity - текущая влажность setLowHumidity - установка минимальной влажности setHighHumidity - установка максимальной влажности

Атрибуты:

humidity - влажность

Нам не ставится задача определения тренда влажности, поэтому класс HumiditySensor, в отличие от классов TemperatureSensor и PressureSensor, не является потомком класса TrendSensor.

Однако требования к системе подразумевают наличие общего поведения для всех трех вышеперечисленных классов. В частности, мы должны обеспечить показ максимального и минимального значений каждого параметра за 24-часа. Эту обязанность можно отразить в следующем описании, общем для всех трех классов:

Отвественность:

Генерация сообщений о максимальных и минимальных значениях параметров за 24-часа.

Операции:

highValue - максимальное значение lowValue - минимальное значение timeOf HighValue - время, соответствующее максимальному значению timeOfLowValue - время, соответствующее минимальному значению

Пока отложим решение вопроса о том, как реализовать эту ответственность; мы вернемся к нему на этапе проектирования. Однако, учитывая то, что данное поведение является общим для всех трех датчиков, представляется целесообразным организация еще одного суперкласса, который мы назовем HistoricalSensor. Класс HumiditySensor является прямым потомком класса HistoricalSensor, так же как и TrendSensor. Последний служит промежуточным абстрактным классом, переходным между абстрактным HistoricalSensor и конкретными TemperatureSensor и PressureSensor.

Абстракция для датчика скорости ветра может выглядеть следующим образом:

Имя:

WindSpeedSensor

Ответственность:

Поддержание информации о текущей скорости ветра.

Операции:

currentSpeed - текущая скорость setLowSpeed - установка минимальной скорости setHighSpeed - установка максимальной скорости

Атрибуты:

speed - скорость

Требования к системе не предполагают возможности получения скорости непосредственно от датчика; текущая скорость ветра должна определяться как отношение числа оборотов на счетчике к величине интервала времени, за которое производились измерения. Полученное число затем надо умножить на калибровочный коэффициент, значение которого определяется конструкцией измерительного устройства. Этот алгоритм должен быть, естественно, реализован внутри класса. Клиенты не должны заботиться о том, каким образом посчитана текущая скорость ветра.

Краткий анализ последних четырех классов системы (TemperatureSensor, PressureSensor, HumiditySensor и WindSpeedSensor) показывает, что у них имеется еще одна общая черта: калибровка измеренных значений посредством линейной интерполяции. Вместо того, чтобы реализовывать эту способность по отдельности в каждом из классов, можно выделить особый суперкласс CalibratingSensor, ответственный за выполнение калибровки.

Ответственность:

Обеспечение линейной интерполяции значений, лежащих в известном интервале.

Операции:

Перейти на страницу:

Похожие книги

Adobe Flash. Создание аркад, головоломок и других игр с помощью ActionScript
Adobe Flash. Создание аркад, головоломок и других игр с помощью ActionScript

Данная книга посвящена программированию игр с помощью ActionScript. Здесь вы найдете подробные указания, необходимые для создания самых разных игр – аркад, головоломок, загадок и даже игровых автоматов. В тексте приведены исходные коды программ и детальные, доступно изложенные инструкции. Базовые принципы программирования ActionScript рассматриваются на примере игр, однако вы без труда сможете применить полученные знания и для разработки неигровых проектов, таких как Web-дизайн и реклама. Рекомендации Гэри Розенцвейга помогут вам не только придумывать занимательные игры и размещать их на Web-сайте, но и оптимизировать скорость их работы, а также защищать свои творения от несанкционированного копирования. Представленный в книге код несложно изменить для использования в других программах.Книга предназначена для широкого круга читателей – создателей анимационных роликов, художников-оформителей, программистов и разработчиков Web-сайтов. Издание может также выступать в качестве практического пособия по изучению ActionScript.

Гэри Розенцвейг

Программирование, программы, базы данных / Программирование / Книги по IT