Читаем Объясняя мир. Истоки современной науки полностью

На первом шаге необходимо рассчитать внутренний угол (тета) каждой из n вершин n-стороннего правильного многоугольника. Проведем лучи из центра многоугольника к каждой из его вершин. В результате многоугольник окажется разделен на n треугольников. Поскольку сумма углов треугольника равна 180° и в каждом из этих треугольников есть по два угла, равных /2, то угол при третьей вершине, совпадающей с центром многоугольника, равняется 180° – . Так как n таких углов должны составлять полный угол 360°, то n (180° – ) = 360°. Решая это уравнение, получаем:



К примеру, для равностороннего треугольника имеем: n = 3, поэтому = 180° – 120° = 60°, тогда как для квадрата n = 4, и = 180° – 90° = 90°.

На втором шаге представим себе, что мы отрезали от нашего многогранника все грани, ребра и вершины, кроме тех, которые примыкают к какой-то одной выбранной вершине. Теперь то, что получилось, мысленно поставим на плоскость и «раздавим», нажав на эту вершину. Теперь N многоугольников, которые смыкались (были смежными) в этой вершине, окажутся лежащими на плоскости, но между ними должно остаться пустое место – в противном случае, если бы они покрывали полный угол, N многоугольников формировали бы слитную плоскую фигуру. Поэтому очевидно, что справедливо неравенство: N < 360°. Подставив вместо приведенную выше формулу и поделив обе части неравенства на 360°, получаем:



или, что то же самое (если обе части разделить на N):



Учтем, что должно выполняться условие n >= 3, поскольку это минимальное количество вершин для многоугольника, и также должно выполняться неравенство N >= 3, так как иначе в многограннике не оставалось бы места между смежными при вершине многоугольными гранями (например, для куба n = 4, потому что грани квадратные, а N = 3). Поэтому вышеприведенное неравенство не позволяет ни отношению 1/n, ни отношению 1/N быть слишком малым, например, 1/2 – 1/3 = 1/6. Соответственно, ни n, ни N не могут быть равными или больше 6. Зная это, легко проверить все возможные комбинации целых чисел в диапазонах 5 >= N >= 3 и 5 >= n >= 3 на соответствие неравенству и обнаружить, что есть только пять таких комбинаций:



(В случаях, когда n равняется 3, 4 и 5, мы имеем стороны правильного многогранника, которые являются равносторонними треугольниками, квадратами и пятиугольниками соответственно.) Именно эти значения N и n присутствуют в тетраэдре, октаэдре, икосаэдре, кубе и додекаэдре.

Вот и все, что доказал Евклид. Но он не доказал, что существует лишь по одному правильному многограннику для каждой возможной пары n и N. Теперь мы пойдем дальше Евклида и покажем, что для каждой пары значений n и N мы получим по единственной комбинации других свойств многогранника: F – количества граней, E – количества ребер, и V – количества вершин. Как мы видим, есть три неизвестные величины, и значит, чтобы их найти, нам потребуется три уравнения. Чтобы вывести первое, отметим, что общее количество сторон всех многоугольников, образующих поверхность многогранника, равняется nF, но при этом каждая из Е граней является общей границей двух соседних многоугольников, поэтому:

2E = nF.

Также учтем, что N граней пересекаются в каждой из V вершин, и притом каждое из E ребер соединяет две вершины, так что:

2E = NV.

И наконец, есть и еще одно, менее явное, соотношение между величинами F, E и V. Чтобы его вывести, нужно принять дополнительное допущение – пусть наш многогранник является односвязным, то есть любой путь, который можно проложить между двумя различными точками его поверхности, можно непрерывно преобразовать в любой другой путь между теми же самыми точками. Это условие выполняется, например, для куба и тетраэдра, но не для многогранника (неважно, правильного или нет), который получили, разместив его вершины и грани вдоль поверхности тора. Существует сложная теорема, которая доказывает, что любой односвязный многогранник можно получить, если последовательно добавлять новые ребра, грани и/или вершины к тетраэдру, а потом сжать получившуюся фигуру до нужной формы. Зная об этом, мы покажем, что любой односвязный многогранник (правильный или неправильный) удовлетворяет равенству:

F – E + V = 2.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии