Читаем Объясняя мир. Истоки современной науки полностью

Чтобы рассчитать площадь круга, Архимед представлял себе многоугольник с большим количеством сторон, описанный вокруг круга. Для простоты рассмотрим правильный многоугольник, у которого все стороны и углы равны. Площадь такого многоугольника есть сумма площадей всех прямоугольных треугольников, которые образуются, если провести лучи из центра многоугольника к каждой из его вершин и к середине каждой из его сторон (см. рис. 4, здесь для примера в качестве многоугольника взят правильный восьмиугольник). Площадь прямоугольного треугольника равна половине произведения обоих его катетов, поскольку два таких треугольника можно сложить вместе гипотенузами, и тогда они образуют прямоугольник, площадь которого равна произведению катетов исходного треугольника. В нашем случае это означает, что площадь каждого треугольника равна половине произведения отрезка r от центра до середины каждой из сторон многоугольника (то есть радиусу круга) и отрезка s от точки на середине стороны до вершины, который, конечно, равен половине стороны многоугольника. Просуммировав площади всех этих треугольников, мы обнаружим, что площадь всего многоугольника равна половине произведения r на полный периметр всего многоугольника. Если мы будем увеличивать количество сторон в многоугольнике до бесконечности, то его площадь будет все точнее совпадать с площадью вписанного круга, а его периметр – с длиной окружности круга. Поэтому площадь круга равна половине произведения его радиуса на длину окружности.

Сегодня мы знаем число = 3,14159… такое, что длина окружности радиусом r будет равняться 2r. Тогда площадь круга равна



Рис. 4. Вычисление площади круга. Чтобы рассчитать площадь круга, используется описанный многоугольник. На этом рисунке у многоугольника восемь сторон, и его площадь уже приблизительно равна площади круга. Чем больше будет сторон у многоугольника, тем точнее его площадь будет совпадать с площадью круга.


Те же самые выводы справедливы и если мы будем вписывать многоугольник внутрь круга, а не описывать его снаружи, как на рис. 4. Поскольку окружность всегда находится между вписанным и описанным многоугольником, расчет площадей обоих этих многоугольников позволил Архимеду найти верхние и нижние границы для отношения длины окружности к ее радиусу, то есть для величины 2.

11. Размеры Солнца и Луны и расстояния до них

Аристарх использовал четыре наблюдательных факта, чтобы определить расстояния от Земли до Солнца и Луны, а также диаметры Солнца и Луны. Все полученные результаты он выразил в единицах диаметра Земли. Рассмотрим каждое из выполненных им наблюдений по очереди и посмотрим, что можно узнать, основываясь на них. Далее расстояния между Землей и Солнцем и Землей и Луной будут обозначаться соответственно и , а диаметры Солнца, Луны и Земли – Dс, Dл и . Предполагая, что диаметры этих тел ничтожно малы по сравнению с расстояниями между ними, примем, что в рассуждениях о расстояниях между Землей, Луной и Солнцем не обязательно брать во внимание расположение на Земле точек, из которых выполняются наблюдения.

Наблюдение 1

Когда Луна в фазе первой или последней четверти, угол между направлениями на Луну и на Солнце составляет 87°.

Если в этот момент смотреть с Луны, угол между направлениями на Солнце и на Землю должен составлять точно 90° (см. рис. 5а), поэтому треугольник, образованный отрезками Луна – Солнце, Луна – Земля и Земля – Солнце, является прямоугольным, в котором отрезок Земля – Солнце есть гипотенуза. Отношение катета, прилежащего к углу  (тета) в прямоугольном треугольнике, к его гипотенузе – тригонометрическая функция косинус угла , которая обозначается cos , и ее значение мы можем взять из таблицы или рассчитать на калькуляторе с тригонометрическими функциями. Итак,



и значит, из наблюдения следует, что Солнце в 19,11 раз дальше от Земли, чем Луна. Не зная тригонометрии, Аристарх мог лишь заключить, что это число не меньше 19 и не больше 20. На самом деле этот угол равен не 87°, а 89,853°, и поэтому Солнце в действительности находится в 389,77 раз дальше от Земли, чем Луна.


Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии