Читаем Объясняя мир. Истоки современной науки полностью

В силу явления преломления луч на самом деле войдет внутрь капли под углом r к перпендикуляру к поверхности, значение которого определяется законом преломления:



где n 4/3 – отношение скорости света в воздухе к скорости света в воде. Луч пересечет толщу капли и достигнет поверхности с обратной стороны в точке P’. Поскольку расстояния между центром C и обеими точками P и P’ одинаковы и равны радиусу капли R, треугольник с вершинами C, P и P’ является равнобедренным, поэтому углы между направлением луча и перпендикулярами к поверхности в точках P и P’ должны быть одинаковы, то есть и тот и другой равны r. Часть света отразится в точке P’ от внутренней поверхности капли: по закону отражения угол между отраженным лучом и перпендикуляром к поверхности в ней будет опять же равен r. Затем отраженный луч снова пересечет толщу капли и достигнет ее передней поверхности в точке P’’, снова образуя с поверхностью угол r.


Рис. 22. Путь солнечного луча внутри сферической дождевой капли. Луч обозначен сплошными отрезками с указывающими направление стрелками: он входит внутрь капли в точке P под углом i к перпендикуляру к поверхности: а) путь луча, если бы явления преломления не было: луч в этом случае приближается к центру капли C в точке Q; б) луч преломляется, входя в каплю в точке P, отражается от задней поверхности капли в точке P’ и снова подвергается преломлению в момент выхода из капли в точке P’’. Пунктирные линии проведены из центра капли C к точкам контакта луча с поверхностью капли.


Часть света затем покидает каплю, и по закону преломления угол между выходящим наружу лучом и перпендикуляром к поверхности в точке P’’ будет равен исходному углу падения i (см. рис. 22 – здесь показана схема следования луча в плоскости, проходящей через падающий луч, центр капли и наблюдателя. Только те лучи, которые встречаются с каплей, находясь в этой плоскости, имеют возможность достигнуть наблюдателя).

По мере всей этой серии поворотов луч света отклонится в сторону центра капли на угол i – r дважды – в моменты входа в каплю и выхода из нее, и на угол 180° – 2r при отражении от ее задней поверхности, и значит, полный угол поворота луча составит:

2(i - r) + 180° - 2r = 180° - 4r + 2i.

Если бы луч возвращался из капли в направлении, точно противоположном тому, в котором вошел (это происходит в случае, когда i = r = 0), этот угол составил бы 180°, а начальное и конечное направления луча были бы параллельны, поэтому действительный угол между ними равен:

= 4r - 2i.

Можно выразить r как функцию от i, вот так:



где для любого аргумента x функция arcsin x – это угол (обычно принимаемый в промежутке от –90° до +90°), синус которого равен x. Численный расчет для показателя n = 4/3, который нам встречается в главе 13, показывает, что возрастает от нуля при i = 0 до максимального значения при 42° и затем снижается примерно до 14° при i = 90°. График зависимости от i горизонтален в своей точке максимума, поэтому большая часть света выходит из капли, подвергаясь отклонению на полный угол, близкий к 42°.

Если мы посмотрим на облачное небо, повернувшись к солнечным лучам спиной, то увидим свет, приходящий к нам под углом 42° между нашим лучом зрения и световыми лучами от солнца. Совокупность этих направлений формирует дугу, которая для нас обычно поднимается в небо из одной точки горизонта и затем опускается к земле в другой. Поскольку коэффициент преломления n слегка варьируется в зависимости от цвета преломляемого луча, для лучей различного цвета углы отклонения тоже слегка отличаются, поэтому мы видим дугу, образованную чередованием полос разного цвета. Это и есть радуга.


Нетрудно вывести аналитическую формулу, дающую максимальное значение для любого коэффициента преломления n. Чтобы найти максимум , примем во внимание тот факт, что точке максимума соответствует такое значение угла падения i, при котором график зависимости от i горизонтален, а это означает, что ничтожно малое изменение угла , происходящее вследствие ничтожно малого изменения i угла i, равняется нулю с точностью до первого порядка величины i. Чтобы использовать это условие, применим табличную формулу из курса дифференциального исчисления, согласно которой при ничтожно малом изменении х аргумента x изменение arcsin x равно:



где, если arcsin x измеряется в градусах, R = 360°/2. Таким образом, когда угол падения изменяется на величину i, угол отклонения меняется на:



или, поскольку sin i = cos i i/R,



Таким образом, условие максимального значения таково, что:



Возведя обе части в квадрат и используя правило cos^2i = 1 - sin^2i (которое является следствием из теоремы Пифагора), мы можем найти из этого выражения значение для sin i:



При этом значении угла падения угол  максимален:



При n = 4/3 максимальный угол отклонения достигается при значении b/R = sin i = 0,86, для которого i = 59,4°, r = 40,2° и max = 42,0°.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии