Читаем Объясняя мир. Истоки современной науки полностью

Тем не менее не наличие ошибок в измерении отличает научный подход Аристарха от современных методов. Время от времени серьезные ошибки в данных продолжают появляться и в наблюдательной астрономии, и в экспериментальной физике. Например, в 1930-х гг. считалось, что Вселенная расширяется в 7 раз быстрее истинной скорости расширения, известной сегодня. На самом деле отличие Аристарха от нынешних астрономов и физиков не в том, что его данные содержали ошибку, а в том, что он ни разу не попытался оценить их погрешность и вообще не признавал того факта, что они могут быть неточными.

Теперь физики и астрономы с полной серьезностью относятся к погрешностям эксперимента. Даже несмотря на то, что еще студентом я знал, что хочу стать физиком-теоретиком и не заниматься экспериментами, мне приходилось делать лабораторные работы, как и всем студентам-физикам в Корнелле. Большую часть времени на этом курсе мы занимались оценкой погрешности своих измерений. Но если рассматривать этот вопрос в контексте истории науки, то ученые стали сравнительно недавно обращать на него внимание. Насколько мне известно, ни в древности, ни в Средневековье никто не относился серьезно к ошибкам измерений. Как мы увидим в главе 14, даже Ньютон лихо игнорировал неточности наблюдений.

На примере труда Аристарха мы наблюдаем пагубный эффект раздутого престижа математики. Его текст напоминает «Начала» Евклида: данные в положениях 1–4 он принимает за постулаты, исходя из которых, используя строгие математические методы, приходит к некоторым выводам. Эффект ошибки наблюдений в его заключениях намного превысил те пределы допущения для размеров и расстояний, которые он жестко обосновал. Может быть, Аристарх не хотел сказать, что угол между направлениями на Луну и Солнце в момент середины четверти составляет ровно 87°, а лишь взял такое значение для примера, чтобы показать, какие выводы можно из этого сделать. Не зря современники прозвали Аристарха Математиком, в то время, как у его учителя Стратона было прозвище Физик.

Тем не менее Аристарх сделал один важный качественный вывод: Солнце значительно больше Земли. Подчеркивая этот факт, Аристарх рассчитал, что объем Солнца как минимум в (361/60)^3 раз (около 218 раз) больше объема Земли. Конечно, мы знаем теперь, что разница гораздо значительнее.

И Архимед, и Плутарх оставили интригующие свидетельства того, что Аристарх, посчитав, что Солнце огромно, решил, что не Солнце обращается вокруг Земли, а Земля вокруг Солнца. Как пишет Архимед в своем «Псаммите»{89}, Аристарх не только сделал вывод, что Земля обращается вокруг Солнца, но и что размер земной орбиты ничтожно мал по сравнению с расстоянием до неподвижных звезд. Похоже, что Аристарх столкнулся с проблемой, которая появляется при рассмотрении любой теории движения Земли. Когда мы, например, вертимся на карусели[6], окрестные наземные предметы с нашей точки зрения двигаются то в одну сторону, то в другую. Точно так же и звезды должны двигаться то вперед, то назад по мере того, как мы их наблюдаем в течение года с движущейся Земли. По всей видимости, Аристотель понимал это, когда оставил замечание, что если бы Земля двигалась, то «… должны происходить отклонения и попятные движения неподвижных звезд. Однако этого не наблюдается: одни и те же звезды всегда восходят и заходят в одних и тех же местах Земли»{90}. Точнее говоря, если Земля обращается вокруг Солнца, то каждая звезда должна описывать в небе замкнутую кривую, размер которой зависит от отношения диаметра орбиты Земли вокруг Солнца к расстоянию до этой звезды.

Так почему, если Земля обращается вокруг Солнца, астрономы древности не наблюдали этого перемещения звезд, известного как годичный параллакс? Чтобы параллакс оставался слишком маленьким для возможности его пронаблюдать, было необходимо предположить, что звезды находятся на очень больших расстояниях. К сожалению, в «Псаммите» Архимед ни разу явно не говорит о параллаксе, и мы не знаем, использовал ли кто-либо в древности этот аргумент для того, чтобы оценить минимально возможное расстояние до звезд.

Аристотель приводил и другие аргументы против гипотезы движущейся Земли. Некоторые опирались на теорию о том, что естественное движение направлено в центр мироздания, как описывалось в главе 3, но другие были основаны на наблюдательных фактах. Аристотель говорил, что если Земля находится в движении, то тела, подброшенные вертикально вверх, отстанут от двигающейся Земли и должны будут упасть не в то же самое место, откуда их подбросили. Вместо этого, как он отмечает, «… тяжести, силой бросаемые вверх, падают снова на то же место отвесно, даже если сила забросит их на бесконечно большое расстояние»{91}. Этот аргумент повторялся разными мыслителями много раз, например, Клавдием Птолемеем (знакомым нам по главе 4) около 150 г., затем Жаном Буриданом в Средние века, до тех пор, пока (как мы увидим в главе 10) настоящий ответ на него не был дан Николаем Оремом.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии