Различные доказательства этой теоремы были предложены Хейтсбери, Джоном Дамблтоном и, наконец, Николаем Оремом. Доказательство Орема более интересно, поскольку он впервые использовал способ представления алгебраических соотношений в графическом виде. Таким образом, он смог свести задачу вычисления расстояния, пройденного телом при равноускоренном движении от нуля до некой конечной скорости, к задаче вычисления площади прямоугольного треугольника, катеты которого соответствуют затраченному времени и конечной скорости (см. техническое замечание 17). Таким образом, теорема о среднем градусе скорости сводится к элементарной геометрической задаче о том, что площадь прямоугольного треугольника равна половине произведения длин его катетов.
Ни профессора Мертон-колледжа, ни Николай Орем, кажется, не попытались приложить теорему о среднем градусе скорости к самому важному случаю, к которому она имеет отношение, – к движению свободно падающих тел. Для них теорема была просто упражнением для ума, доказывающая, что они способны с помощью математики справиться с неравномерным движением. Если теорема о среднем градусе скорости и демонстрирует возросшие возможности математики, то она же и показывает, какими непростыми все еще оставались взаимоотношения между математикой и естественными науками.
Несмотря на то, что вполне очевидно (как продемонстрировал еще Стратон), что падающие тела ускоряются, совершенно неочевидно, что скорость падающих тел возрастает пропорционально
С середины XIV в. до середины XV в. Европа была охвачена бедствием. Столетняя война между Англией и Францией иссушила Англию и опустошила Францию. Церковь переживала раскол: один папа правил в Риме, другой – в Авиньоне. Черная смерть – чума – выкосила большую часть населения.
Возможно, именно из-за Столетней войны центры научной мысли в этот период переместились к востоку, из Франции и Англии – в Германию и Италию. В этих двух странах жил и работал ученый Николай Кузанский. Он родился в 1401 г. в местечке Куза на реке Мозель в Германии, а умер примерно в 1464 г. в умбрийской провинции в Италии. Николай учился в Гейдельберге и в Падуе, стал юристом по каноническому праву, дипломатом, а в 1448 г. – кардиналом. По его работам видно, что средневековая проблема отделения естественных наук от теологии и философии по-прежнему оставалась актуальной. Николай туманно писал о движущейся Земле и бесконечном мире, но не использовал математику. Хотя позднее на него ссылались Кеплер и Декарт, трудно понять, как они смогли узнать что-то новое из его трудов.
В позднем Средневековье сохраняется появившееся у арабов разделение на астрономов-математиков, которые пользовались системой Птолемея, и врачей-философов, последователей Аристотеля. Среди астрономов XV в., в основном немецких, следует отметить Георга Пурбаха и его ученика Йоганна Мюллера фон Кенигсберга (также известного как Региомонтан), которые вместе продолжали работать над теорией эпициклов Птолемея{167}
и внесли в нее дополнения. Позже Коперник почерпнул много полезных сведений из краткого изложения «Альмагеста», сделанного Региомонтаном. Среди врачей-философов были Алессандро Акиллини (1463–1512) из Болоньи и Джироламо Фракасторо (1478–1553) из Вероны. Оба получили образование в Падуе в то время, когда там царило засилье аристотелевских идей.Фракасторо своеобразно объяснял причины конфликта: