Читаем Объясняя мир. Истоки современной науки полностью

Хитрость в доказательстве этой теоремы заключается в том, что необходимо из центра C окружности провести в точку P радиус CP. При этом треугольник ABP окажется разделен на два треугольника: ACP и BCP (см. рис. 1). Оба эти треугольника являются равнобедренными, то есть такими, у которых две стороны равны. В треугольнике ACP стороны CA и CP являются радиусами окружности и, по определению окружности, равны (будем обозначать стороны треугольника по точкам, которые они соединяют). Аналогично в треугольнике BCP равны стороны CB и CP. В равнобедренном треугольнике углы, противолежащие равным сторонам, равны между собой, поэтому угол α (альфа) между сторонами AP и AC равен углу между сторонами AP и CP, а угол β (бета) между сторонами BP и BC равен углу между сторонами BP и CP. Сумма углов любого треугольника равна удвоенному прямому углу[26], или, как сейчас принято говорить, 180°, поэтому если в треугольнике ACP третий угол между сторонами AC и CP обозначить α′ и точно так же обозначить β′ угол между сторонами BC и CP в треугольнике BCP, то будут верны равенства:

2α +α' = 180°; 2β+β' = 180°

Сложив оба равенства и переставив слагаемые местами, получим:

2(α + β)+ (α' + β') = 360°.

Учтем, что α′ + β′ – это развернутый угол между сторонами AC и BC, то есть такой угол, лучи которого образуют отрезок прямой линии. Его величина составляет 180°, поэтому:

2(α + β) = 360° − 180° = 180°.

Следовательно, α + β = 90°. Но если посмотреть на рисунок 1, то легко увидеть, что угол α + β – это угол между сторонами AP и BP в исходном треугольнике ABP, значит, он является прямоугольным треугольником, что и требовалось доказать.


Рис. 1. Доказательство теоремы Фалеса. Теорема утверждает, что для любой взятой на окружности точки P угол между отрезками, проведенными из этой точки к концам произвольного диаметра AB, будет прямым.


2. Платоновы тела

В рассуждениях Платона о природе вещества центральное место занимает класс геометрических тел, известных как правильные многогранники, которые также известны как платоновы многогранники. Правильные многогранники можно рассматривать как трехмерную аналогию правильных многоугольников в планиметрии, и в определенном смысле они строятся из правильных многоугольников. Правильный многоугольник – это плоская фигура, ограниченная n одинаковыми отрезками, имеющая n вершин, причем углы, образуемые соседними сторонами при каждой вершине, равны. Например, правильными многоугольниками являются равносторонний треугольник (треугольник, все стороны которого равны) и квадрат. Правильный многогранник – это объемное тело, ограниченное одинаковыми правильными многоугольниками, причем все его вершины представляют собой равные телесные углы, стороны которых образованы N равными многоугольниками-гранями.

Самый привычный пример правильного многогранника – это куб. Куб образуют шесть одинаковых граней-квадратов, в каждой из его восьми вершин смыкаются три квадратные грани. Есть еще более простой правильный многогранник, тетраэдр: это треугольная пирамида, образованная четырьмя одинаковыми равносторонними треугольниками, у него четыре вершины, в каждой их которых смыкаются три треугольные грани. (Мы рассматриваем только выпуклые многогранники, у которых каждая вершина направлена наружу – к ним относятся и куб, и тетраэдр.) Из текста «Тимея» понятно, что Платон откуда-то знал о том, что может быть лишь пять различных видов таких правильных многогранников, и он посчитал, что атомы различных форм материи имеют форму именно этих многогранников. Пять правильных многогранников включают тетраэдр, куб, октаэдр, додекаэдр и икосаэдр с 4, 6, 8, 12 и 20 гранями соответственно.

Сохранившееся со времен античности свидетельство о самой ранней попытке доказать, что существует лишь пять правильных многогранников, имеется в финальной, кульминационной части «Начал» Евклида. В предложениях 13–17 книги XIII Евклид описывает геометрическое строение тетраэдра, октаэдра, куба, икосаэдра и додекаэдра. Затем он пишет: «Вот я утверждаю, что, кроме упомянутых пяти тел, нельзя построить другого тела, заключенного между равносторонними и равноугольными равными друг другу <многоугольниками>»[27]. На самом деле после этого утверждения Евклид доказывает более узкую теорему о том, что в правильном многограннике существует только пять возможных комбинаций количества сторон n у каждой многоугольной грани и количества N смежных в каждой вершине многоугольников. Ниже приведено доказательство, аналогичное евклидову, но с использованием современной терминологии.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Тринадцать вещей, в которых нет ни малейшего смысла
Тринадцать вещей, в которых нет ни малейшего смысла

Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки. Не случайно один из критиков назвал Майкла Брукса «Индианой Джонсом в лабораторном халате».Майкл Брукс — британский ученый, писатель и научный журналист, блистательный популяризатор науки, консультант журнала «Нью сайентист».

Майкл Брукс

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука / Документальное
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии