В двух первых законах Кеплера ничего не говорилось о сравнении орбит различных планет. Этот пробел был заполнен в 1619 г. в «Гармонии мира» (Harmonices mundi) положением{196}
, которое стало в будущем известно как Третий закон Кеплера: «Квадраты периодов обращения любых двух планет относятся между собой как кубы их средних расстояний от Солнца»{197}. Это означает, что квадрат сидерического периода каждой планеты (время, которое ей требуется, чтобы совершить полный оборот по своей орбите) пропорционален кубу длинной оси эллипса. Так, еслиОтклонения от точного равенства соотношения
Так и не избавившись полностью от восхищения Платоном, Кеплер попытался придать смысл этим размерам орбит, вернувшись к использованию правильных многогранников в «Тайне мироздания». Он также развлекался с пифагорейской идеей о том, что различные планетные периоды формируют что-то вроде музыкальной шкалы. Как и другие ученые своего времени, Кеплер только частично принадлежал к новому миру науки, который лишь зарождался, а частично – к старинной философской и поэтической традиции.
«Рудольфовы таблицы» были закончены только в 1627 г. Основанные на первых двух законах Кеплера, они демонстрировали гораздо более высокую точность по сравнению с предшествующими «Прусскими таблицами». Новые таблицы предсказывали прохождение Меркурия по диску Солнца в 1631 г., которое Кеплеру увидеть не довелось. После того как его как протестанта заставили покинуть католическую Австрию, Кеплер умер в Регенсбурге в 1630 г.
Работы Коперника и Кеплера создали доказательную базу для гелиоцентрической теории, основанной на математической простоте и непротиворечивости, а не только на лучшей согласованности с наблюдением. Как мы уже видели, простейшие версии теорий Коперника и Птолемея дают те же самые предсказания видимого движения Солнца и планет и достаточно хорошо согласуются с наблюдением, и уточнения, внесенные Кеплером в теорию Коперника, могли бы подойти и теории Птолемея, если бы он использовал эквант и эксцентр как для планет, так и для Солнца, и добавил еще несколько эпициклов. Первое решающее подтверждение гелиоцентрической теории
Галилей был одним из величайших ученых в истории, и достоин стоять в одном ряду с Ньютоном, Дарвином и Эйнштейном. Он произвел революцию в наблюдательной астрономии, создав и использовав телескоп. Его работы по изучению движения создали исследовательскую парадигму для современной экспериментальной физики. Более того (в какой-то степени это уникальный случай), его научная деятельность сопровождалась высокой драмой, о которой здесь мы можем рассказать только очень кратко.
Галилей происходил из благородной, хотя и небогатой тосканской семьи. Он родился в Пизе в 1564 г. в семье теоретика музыки Винченцо Галилея. Поучившись некоторое время в школе при одном тосканском монастыре, он поступил в университет Пизы, чтобы изучать медицину. В этот период жизни он считал себя последователем Аристотеля, что неудивительно для студента-медика. Постепенно интересы Галилея переключились с медицины на математику, и некоторое время он даже давал уроки математики во Флоренции, столице Тосканы. В 1589 г. Галилея пригласили вернуться в Пизу, чтобы занять должность профессора математики.