Читаем Обитаемые космические станции полностью

В одном из опубликованных в печати проектов [26] рассматривается трехступенчатая ракета, у которой первая и третья (последняя) ступени работают на жидком топливе, а вторая ступень имеет крылья и снабжена прямоточными двигателями. Жидкостные двигатели первой ступени поднимают ракету на высоту 12 км, одновременно разгоняя ее до скорости 300 м/сек. На этой скорости запускаются прямоточные двигатели второй ступени, обеспечивающие разгон ракеты до 4000 м/сек по относительно пологой траектории. В конце работы второй ступени ракета достигает высоты около 30 км. С этой высоты начинает работать третья ступень, траектория полета ракеты становится более крутой, а отделившаяся вторая крылатая ступень плавно снижается и производит посадку на Землю.

Практическая реализация подобных проектов вызовет, видимо, значительные трудности. Дело в том, что пока еще не удается обеспечить устойчивую работу прямоточного двигателя в широком диапазоне скоростей полета. Кроме того, обшивка ракеты, летящей с высокой скоростью на относительно малой высоте, будет подвержена значительному аэродинамическому нагреву.


Рис. 13. Схема ядерного двигателя с твердыми тепловыделяющими элементами:

1 — подача рабочего тела; 2 — сопло; 3 — отражатель; 4 — замедлитель с ядерным горючим

Как известно, при использовании ЖРД на борту ракеты-носителя необходимо иметь два компонента топлива — горючее и окислитель. В этом отношении большой интерес представляет ядерный ракетный двигатель (ЯРД), который работает на однокомпонентном рабочем теле, а главное, дает высокую удельную мощность. По своей схеме такой двигатель отличается от ЖРД только тем, что нагрев его рабочего тела происходит не в камере сгорания, а в ядерном реакторе (рис. 13). При этом отпадает одно из препятствий для получения высоких скоростей истечения, свойственное ЖРД, для которого очень важно удачно выбрать сочетание компонентов топлива. Чем легче топливо, чем меньше его молекулярный вес, тем больше можно получить скорость истечения из двигателя. В ЯРД можно применять рабочее тело с самым малым молекулярным весом, например водород или гелий. К сожалению, максимальная температура рабочего тела, от которой также зависит скорость истечения и тяга двигателя, ограничена стойкостью применяемых ядерных и конструкционных материалов. Поэтому вопросы охлаждения занимают здесь еще более важное место, чем в ЖРД.

Известно, что чистый уран плавится при температуре 1130 °C, а это явно недостаточно для ракетного двигателя. Если в качестве активной массы реактора применять окись урана (температура плавления 2750 °C), то можно получить достаточно эффективный ЯРД с твердыми тепловыделяющими элементами. Но и такая температура не предел для ЯРД. Рассматривается возможность создания реакторов с жидкими тепловыделяющими элементами, позволяющими нагревать рабочее тело до температур намного выше 3000 °C. Наиболее высокая температура нагрева может быть получена в так называемом газофазном реакторе (температура выше 3500 °C) [13].

По соображениям безопасности для экипажа ракеты с ядерным двигателем необходимо иметь мощную антирадиационную защиту, что, конечно, в значительной мере увеличит стартовый вес. И еще одно условие: в целях предотвращения загрязнения атмосферы радиоактивными продуктами реактивной струи ядерный двигатель желательно включать лишь на значительной высоте. Эти недостатки делают применение такого двигателя на первой ступени ракеты неудобным и крайне нежелательным. Хотя в настоящее время ядерные ракетные двигатели находятся в стадии разработки, тем не менее многие проекты ракет-носителей для выведения ОКС предусматривают их применение. Так, по американскому проекту «Ровер» на третьей ступени ракеты-носителя «Сатурн» С-2 предполагается установить ядерный двигатель, что позволит вывести на орбиту высотой 560 км ОКС весом 31 т.

В зарубежной печати встречаются также сообщения о проектах очень мощных ракет на ядерном горючем для выведения сверхтяжелых орбитальных станций. Например, проект под условным названием «Антарес» задуман с целью исследования возможности выведения на орбиту полезного груза весом до 2500 т, а проект «Альдебаран» имеет целый создание космических систем для запуска орбитальной станции весом 30 000 т. Сейчас эти цифры кажутся нам совершенно фантастическими, но разве не фантастикой казалась еще недавно возможность посылки почти тонны полезного груза к Марсу?

ОРИЕНТАЦИЯ И СТАБИЛИЗАЦИЯ

В сообщениях о полетах космонавтов можно прочесть о ручном управлении космическим кораблем и об автоматической системе его ориентации. Что такое ориентация и в какой мере можно осуществлять управление орбитальным кораблем?

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос