Читаем Обитаемые космические станции полностью

Обеспечение надежной защиты экипажа космического аппарата от действия радиации солнечных вспышек — весьма сложная задача. Достаточно сказать, что для защиты от средней по интенсивности вспышки 12 мая 1959 г. потребовался бы толстый графитовый экран, вес которого при площади 10 м2 составил бы 5 т. Теперь понятно, почему большое значение приобретает прогнозирование вспышек на Солнце. Многолетними наблюдениями за Солнцем установлено, что в его деятельности имеются периоды минимальной активности, Эти периоды наиболее благоприятны для полетов человека в космос и пребывания людей на борту орбитальных станций. Предполагается, что очередные периоды минимальной солнечной активности будут наблюдаться в 1963–1966 и 1972–1975 гг.

Итак, наибольшую опасность для экипажа ОКС представят интенсивные потоки протонов при вспышках на Солнце и при прохождении станцией внутреннего пояса радиации, где мощность дозы может достигать 1 рентгена в минуту и более. Как мы уже говорили, именно протоны являются теми частицами, от которых в первую очередь необходимо защищаться. Однако при разработке системы радиационной защиты ОКС нужно учитывать и то, что, попадая в материал обшивки и конструкции, протоны способны создавать вторичные продукты радиации, в частности гамма-лучи и рентгеновские лучи, обладающие еще большей проникающей способностью, чем протоны.

Способы защиты от космической радиации могут быть пассивными и активными. Пассивные способы аналогичны тем, которые применяются в настоящее время в практике реакторостроения, и основаны на свойствах материалов поглощать и частично отражать радиацию. Активные способы — это отражение протонов с использованием электростатических или электромагнитных полей. Используя положительный заряд протонов, можно воздействием поля изменить направление их потока и заставить обойти космическую станцию. Активная защита более эффективна, но связана с очень большим расходом энергии.

Пассивная защита может осуществляться экранированием наиболее ответственных, в первую очередь жилых и рабочих, отсеков ОКС щитами из материала, обеспечивающего уменьшение дозы ниже допустимого предела. Наилучшей поглощающей способностью обладают элементы с высоким атомным весом и прочными электронными связями, например свинец. Он является эффективным защитным материалом не только от протонов, но и от вторичных продуктов радиации. Водород, например, в качестве защиты от протонов по весу в пять раз эффективнее свинца, но водород беспомощен против гамма-излучения. Система же защиты свинцовыми экранами имеет очень большой вес.

На графике рис. 23 в логарифмическом масштабе показано изменение потребного веса защитных свинцовых экранов в зависимости от допускаемой скорости нарастания биологической дозы, создаваемой протонами внутреннего пояса радиации на высоте 3500 км и протонами от солнечной вспышки в мае 1959 г. [16].


Рис. 23. График изменения веса защиты в зависимости от скорости нарастания условной биологической дозы:

1 — от протонов во внутреннем поясе радиации; 2 — от протонов солнечной вспышки

На том же графике можно видеть, что если экипаж ОКС длительное время находится на орбите и существует опасность возникновения солнечной вспышки, то для снижения скорости нарастания дозы до более или менее приемлемого уровня (0,001 рентгена в минуту) свинцовая защита должна иметь толщину, соответствующую погонному весу более 500 кг на квадратный метр.

Приведенные зависимости носят, разумеется, общий оценочный характер и нуждаются в дальнейшем уточнении. Однако уже в таком виде они дают представление о потребной толщине свинцовых экранов и свидетельствуют о необходимости применения более эффективных в весовом отношении защитных материалов. Такими материалами могут оказаться исследуемые в настоящее время бор, углерод, полиэтилен и их комбинации.

Весьма перспективным средством повышения эффективности противорадиационной защиты считается комбинирование пассивного экрана с одним из активных способов.

Зная энергию приходящих протонов, нетрудно подсчитать потенциал электростатического поля для отражения всех протонов с заданным уровнем энергии. При создании электростатического поля вокруг космического аппарата его можно окружить двумя концентрическими сферами: внешней, заряженной отрицательно, и внутренней, заряженной положительно. Чем больше будет радиус внешней сферы, тем меньше величина заряда, которую надо сообщить сферам для отражения всех протонов с заданной энергией.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос