Кроме того, известно, что при длительном введении серебра в организм кожа может приобрести голубой оттенок, что в совокупности с голубой кровью богов неизбежно усиливает эффект голубой кожи.
Это, кстати, недавно наглядно продемонстрировал один из жителей США, который из-за панической боязни микробов длительное время принимал препараты, содержащие серебро. В итоге его кожа приобрела насыщенно голубой цвет…
* * *
Однако кровь на основе гемоцианина имеет не только некоторые преимущества, но и серьезные недостатки. И прежде всего в том, что касается транспортных свойств — только по отношению не к кислороду, а к углекислому газу. Но здесь нам сначала придется вернуться к биохимии человека и посмотреть, как при привычной нам крови осуществляется вывод СО
2из организма и с чем связан этот процесс…Процесс дыхания и транспорта газов кровью основан на том, что переход какого-либо газа от одних органов к другим осуществляется прежде всего путем диффузии, которая обеспечивается за счет разности парциальных давлений этого газа в разных органах. Для незнакомых с этим термином поясним: парциальное давление газа в смеси равно тому давлению, которое будет иметь данный газ, если все остальные газы из смеси удалить.
Рис. 179. Транспорт газов.
Диффузия кислорода в кровь обеспечивается разностью парциальных давлений O
2в воздухе альвеол легких и в венозной крови (8–9 кН/м 2, или 60–70 мм рт. ст.). Углекислый газ, приносимый кровью из тканей в связанной форме, освобождается в капиллярах легких и диффундирует из крови в альвеолы; разность pCO 2(парциального давления углекислого газа) между венозной кровью и альвеолярным воздухом составляет около 7 мм рт. ст. Переход O 2в ткани и удаление из них CO 2также происходят путем диффузии, так как pO 2(парциальное давление кислорода) в тканевой жидкости всего 2,7–5,4 кН/м 2(20–40 мм рт. ст.), а в клетках еще ниже, при этом pCO 2в клетках может достигать 60 мм рт. ст.Но помимо простой диффузии в процессе переноса газов играют роль и химические реакции. И углекислый газ не находится в организме в свободном состоянии — он, соединяясь с водой (гидратируясь), дает угольную кислоту (H
2CO 3), молекула которой диссоциирует на ион гидрокарбоната (HCO 3—) и протон (HОбратная картина наблюдается при удалении из крови CO
2около дыхательной поверхности. Происходящая здесь оксигенация (присоединение кислорода) гемоглобина приводит к высвобождению из его молекулы протонов (то есть ионов HТаким образом, процесс дыхания и переноса газов кровью оказывается тесно связан с
кислотно-щелочным балансом крови. И вот, что нам будет важно: оксигенированный гемоглобин (т. е., гемоглобин, насыщенный кислородом) — в 70 раз (!!!) более сильная кислота, чем гемоглобин. Это играет большую роль в связывании в тканях О 2и отдаче в легких СО 2. Потеря кислотных свойств гемоглобином при отдаче кислорода тканям усиливает его взаимодействие с СО 2(а соответственно и передачу СО 2от тканей в кровь). И наоборот: насыщение кислородом крови в легких повышает кислотность гемоглобина, который вытесняет кислотный остаток угольной кислоты из ее соединений, способствуя ее переходу в форму угольной кислоты (Н 2СО 3), которая тут же распадется на воду и углекислый газ, что увеличивает отдачу СО 2из крови в воздух легких. Говоря языком специалистов, благодаря гемоглобину процесс переноса СО 2в крови оказывается очень тесно сопряжен (связан) с переносом О 2.Так вот. У животных, использующих вместо гемоглобина в качестве дыхательного пигмента гемоцианин, перенос O
2кровью не так тесно сопряжен с транспортом CO 2, как у живых организмов, гемоглобин которых находится в эритроцитах вместе с карбоангидразой.Прежде всего: становится более понятен выбор эволюции в пользу тех дыхательных пигментов (а именно — гемоглобина), которые содержат именно ионы железа — гемоглобин более эффективен.