Органические соединения, к которым относится большинство молекул, составляющих живой организм, основываются на несущих конструкциях из атомов углерода, связанных друг с другом в ту или иную трехмерную структуру. Среди девяноста двух природных химических элементов, встречающихся на Земле, только углерод способен создавать стабильные связи между собственными атомами и благодаря этому сооружать комплексные структуры: линейные или разветвленные цепочки, кольца и даже трехмерные фигуры. Их можно рассматривать как скелеты, на которых затем строятся более сложные молекулы.
Бывает, что в скелет включаются также атомы кислорода, азота, реже серы и других элементов. К этому каркасу, который нам пока еще удобно представлять в виде шариков и палочек, нужно добавить еще атомы водорода в количестве, достаточном, чтобы насытить валентности углерода. Чтобы построить модель, соответствующую реальной молекуле, необходимо насытить валентности всех атомов, то есть установить все возможные связи между ними. Для этого нужно только запомнить, что атом углерода образует четыре связи (выражаясь более научно, валентность углерода – 4), азот – три, кислород – две, а водород – только одну.
Еще один важный фактор – размер молекулы, как в плане занимаемого ею места, так и в плане массы. Часто молекулярная масса молекулы принимается за показатель размера: этот параметр легко вычислить, сложив атомные массы отдельных атомов. Чтобы еще упростить себе задачу, мы пользуемся относительными измерениями, принимая атомную массу водорода, самого маленького атома, за единицу и отсчитывая массы других атомов от нее. Масса атома углерода эквивалентна массе 12 атомов водорода; азота – 14; кислорода – 16. Соответственно, мы говорим, что атомная масса углерода – 12 и т. д. Выходит, что вклад самих атомов водорода в общий размер молекулы сравнительно невелик, и поэтому химики иногда упрощают модель и вовсе игнорируют их присутствие.
Связи между атомами (и черточки между их химическими символами) образуют топологию молекулы и позволяют построить ее трехмерную модель. Записывая структуру какой-нибудь сложной молекулы, мы нередко опускаем символы углерода и водорода и даже сами связи между их атомами. Это емкое, синтетическое обозначение показывает фактически только скелет молекулы, но все равно содержит всю информацию, необходимую для построения полной модели. На рисунке 2 показаны структуры трех разных молекул: открытая цепочка, кольцевая и ароматическая. Каждая представлена тремя разными способами, от синтетической структурной нотации до пространственной модели, довольно точно отображающей реальную форму и размер молекулы.
Первая структура – это 1-деканол, дециловый спирт. Его молекула выглядит как длинная цепочка из атомов углерода со спиртовой группой на одном конце. В виде модели она похожа на гусеницу и, подобно гусенице, очень гибка, способна принимать самую разную форму – и прямую, и свернутую, и волнообразную. Вторая – циклогексанол. Здесь спиртовая группа прикреплена к циклической структуре из шести атомов углерода. Такая молекула тоже довольно гибка и обычно имеет форму стульчика. Третий пример – ароматическая молекула, фенол. Ее кольцо плоское и жесткое, что объясняется свойствами некоторых электронов, связывающих атомы углерода друг с другом. Каждый из углеродных атомов кольца использует один электрон, чтобы присоединиться к следующему атому углерода, а другой при этом включается во что-то вроде заряженного облака, равномерно охватывающего всю структуру. У всех соединений, которые мы называем ароматическими, плоская форма и особые химические свойства.
Рисунок 2.
Разные способы отображения молекулярной структуры. Вверху: сокращенная структура. Каждый угол соответствует атому углерода; атомы водорода не показаны; представлены только связи между основными атомами. В середине: модель из шариков и палочек. Все атомы водорода показаны. Внизу: трехмерная модель, довольно реалистично передающая размер и форму молекулы.Вернемся теперь к нашему первому вопросу: можно ли предсказать, как будет пахнуть химическое вещество, просто посмотрев на его молекулярную структуру? И наоборот, можно ли создать молекулу с конкретным желаемым ароматом?
На оба вопроса можно ответить кратко: нет. Чарльз Селл, химик, занимающийся созданием новых ароматов, много раз получал такие задания и в конце концов суммировал свои выводы в статье с совершенно недвусмысленным названием: «О непредсказуемости запахов». Его аргументация сводится к чрезвычайной сложности ольфакторного кода, которая не дает ученым анализировать и воспроизводить запахи со сколько-нибудь заметной точностью [1].