Как видно, в молекуле ортофосфорный кислоты каждый атом водорода соединен с атомом кислорода. Все эти атомы водорода способны замещаться атомами металлов: поэтому H3PO4 трехосновна. В молекуле фосфористой кислоты только два атома водорода непосредственно связаны с атомами кислорода и способны замещаться атомами металлов: эта кислота двухосновна. В молекуле же фосфорноватистой кислоты с атомом кислорода связан лишь один атом водорода, что и обусловливает ее одноосновность.
Изображение химического строения молекул с помощью структурных формул особенно важно при изучении органических веществ (см. № 163).
Структурные формулы отражают лишь последовательность соединения атомов друг с другом, а не взаимное расположение атомов в пространстве. Изображение химического строения с помощью структурных формул допустимо только для веществ, состоящих из молекул. Между тем многие вещества состоят не из молекул, а из атомов (например, карбид кремния SiC). Структура подобных веществ определяется типом их кристаллической решетки и будет подробнее рассмотрена в гл. V.
113
Теория химического строения объяснила явление изомерии, которое заключается в существовании соединений, обладающих одним и тем же качественным и количественным составом, но разными свойствами. Такие соединения были названы изомерами.
Явление изомерии будет подробно рассмотрено при изучении органических соединений (см. № 162), среди которых оно очень распространено. Следует, однако, иметь в виду, что изомерия присуща и неорганическим веществам. Так, еще в 1824 г. Либих установил, что серебряные соли гремучей кислоты AgONC и циановой кислоты AgNCO имеют одинаковый состав, тогда как свойства этих веществ сильно различаются. С примерами изомерии мы встретимся и при изучении комплексных соединений (см. № 205).
Разрабатывая теорию химического строения, Бутлеров не ставил перед собой задачу выяснения природы химической связи, справедливо считая, что химия в то время еще не была готова к решению этой задачи. Действительно, необходимой предпосылкой создания теории химической связи было выяснение строения атома. Лишь после того, как стали известны основные черты электронной структуры атомов, появилась возможность для разработки такой теории. В 1916 г. американский физико-химик Дж. Льюис высказал предположение, что химическая связь возникает путем образования электронной пары, одновременно принадлежащей двум атомам; эта идея послужила исходным пунктом для разработки современной теории ковалентной связи. В том же 1916 г. немецкий ученый В. Коссель предположил, что при взаимодействии двух атомов один из них отдает, а другой принимает электроны; при этом первый атом превращается в положительно заряженный, а второй — в отрицательно заряженный ион; взаимное электростатическое притяжение образовавшихся ионов и приводит к образованию устойчивого соединения. Дальнейшее развитие идей Косселя привело к созданию современных представлений о ионной связи.
39. Ковалентная связь. Метод валентных связей.
Мы уже знаем, что устойчивая молекула может образоваться только при условии уменьшения потенциальной энергии системы взаимодействующих атомов. Для описания состояния электронов в молекуле следовало бы составить уравнение Шредингера для соответствующей системы электронов и атомных ядер и найти его решение, отвечающее минимальной энергии системы. Но, как указывалось в № 31, для многоэлектронных систем точное решение уравнения Шредингера получить не удалось. Поэтому квантово-механическое описание строения молекул получают, как и случае многоэлектронных атомов, лишь на основе приближенных решений уравнения Шредингера.
Впервые подобный приближенный расчет был произведен в 1927 г. В. Гейтлером и Ф. Лондоном для молекулы водорода. Эти авторы сначала рассмотрели систему из двух атомов водорода, находящихся на большом расстоянии друг от друга.
114
При этом условии можно учитывать только взаимодействие каждого электрона со «своим» ядром, а всеми остальными взаимодействиями (взаимное отталкивание ядер, притяжение каждого электрона к «чужому» ядру, взаимодействие между электронами) можно пренебречь. Тогда оказывается возможным выразить зависимость волновой функции рассматриваемой системы от координат и тем самым определить плотность общего электронного облака в любой точке пространства. (Напомним, что плотность электронного облака пропорциональна квадрату волновой функции — см. № 26).
Рис. 26. Энергия системы, состоящей из двух атомов водорода:
а — при одинаково направленных спинах электронов; б — при противоположно направленных спинах; Е0 — энергия системы из двух невзаимодействующих атомов водорода; rc — межъядерное расстояние в молекуле водорода.