Читаем Общая химия полностью

Рис. 17 приближенно передает форму электронного облака не только 2p-электронов, но также и p-электронов третьего и последующих слоев. Но графики радиального распределения вероятности имеют здесь более сложный характер: вместо одного максимума, изображенного в правой части рис. 16, на соответствующих кривых появляются два максимума (3p-электрон), три максимума (4p-электрон) и т.д. При этом наибольший максимум располагается все дальше от ядра.

Еще более сложную форму имеют электронные облака d-электронов (l=2). Каждое из них представляет собой «четырехлепестковую» фигуру причем знаки волновой функции в «лепестках» чередуются (рис. 18).

<p>30. Магнитное и спиновое квантовые числа.</p>

В предыдущих параграфах мы выяснили, что размеры и формы электронных облаков в атоме могут быть не любыми, а только такими, которые соответствуют возможным значениям квантовых чисел n и l. Из уравнения Шредингера следует, что и ориентация электронного облака в пространстве не может быть произвольной: она определяется значением третьего, так называемого магнитного квантового числа m.

Магнитное квантовое число может принимать любые целочисленные значения — как положительные, так и отрицательные — в пределах от + l до — l. Таким образом, для разных значений  l число возможных значений m различно. Так, для s-электронов (l=0) возможны три различных значения m (-1, 0, +1); при l=2 (d-электроны) m может принимать пять различных значений (-2, -1, 0, +1, +2). Вообще, некоторому значению l соответствует (2l+1) возможных значений магнитного квантового числа, т.е. (2l+1) возможных расположений электронного облака в пространстве.

Мы уже знаем, что орбитальный момент количества движения электрона представляет собой вектор , величина которого квантована и определяется значением орбитального квантового числа l. Из уравнения Шредингера вытекает, что не только величина, но и направление этого вектора, характеризующее пространственную ориентацию электронного облака, не может быть произвольным, т.е. квантовано. Допустимые направления вектора  и определяются значениями магнитного квантового числа m.

- 80 -

Рис. 19. К возможному набору значений магнитного квантового числа.

Стрелками показаны допустимые направления орбитального момента количества движения.

Набор возможных значений m можно пояснить следующим образом. Выберем некоторое направление в пространстве, например, ось z (рис. 19). Каждому направлению вектора заданной длины (в рассматриваемом случае — орбитального квантового числа l*) соответствует определенное значение его проекции на ось z. Из уравнения Шредингера следует, что эти направления могут быть только такими, при которых проекция вектора l на ось z равна целому числу (положительному или отрицательному) или нулю; значение этой проекции и есть магнитное квантовое число m. На рис. 19 представлен случай, когда l=2. Здесь m=2, если направления оси z и вектора  l совпадают;  m=-2, когда эти направления противоположны;  m=0, когда вектор l перпендикулярен оси z; возможны и такие направления вектора l, когда m принимает значения ±1. Таким образом, магнитное квантовое число может принимать 2l+1 значений.

Квантовое число m получило название магнитного, поскольку от его значения зависит взаимодействие магнитного поля, создаваемого электроном, с внешним магнитным полем. В отсутствие внешнего магнитного поля энергия электрона в атоме не зависит от значения m. В этом случае электроны с одинаковыми значениями n и l, но с разными значениями m обладают одинаковой энергией.

Однако при действии на электрон внешнего магнитного поля энергия электрона в атоме изменяется, так что состояния электрона, различающиеся значением m, различаются и по энергии. Это происходит потому, что энергия взаимодействия магнитного поля электрона с внешним магнитным полем зависит от величины магнитного квантового числа. Именно поэтому в магнитном поле происходит расщепление некоторых атомных спектральных линий; вместо одной линии в спектре атома появляются несколько (так называемый эффект Зеемана).

Состояние электрона в атоме, характеризующееся определенными значениями квантовых чисел n, l и m, т.е. определенными размерами, формой и ориентацией в пространстве электронного облака, получило название атомной электронной орбитали.

На рис. 20 приведены формы и расположение в пространстве электронных облаков, соответствующих 1s-, 2p- и 3d-орбиталям. Поскольку s-состоянию (l=0) соответствует единственной значение магнитного квантового числа (m=0), то любые возможные расположения s-электронного облака в пространстве идентичны. Электронные облака, отвечающие p-орбиталям (l=0), могут характеризоваться тремя различными значениями m; в соответствии с этим они могут располагаться в пространстве тремя способами (рис. 20).

* Более строго следует рассматривать проекцию на ось z не орбитального квантового числа l, а определяемого им орбитального момента количества движения М.

- 81 -

Перейти на страницу:

Похожие книги

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей
Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

«Сумма биотехнологии» Александра Панчина — это увлекательный научно-популярный рассказ о генетически модифицированных организмах (ГМО), их безопасности и методах создания, а также о других биотехнологиях, которые оказались в центре общественных дискуссий. Из книги вы узнаете все самое интересное о чтении молекул ДНК, возможности клонирования человека, создании химер, искусственном оплодотворении и генетической диагностике, о современных методах лечения наследственных заболеваний с помощью генной терапии, о перспективах продления человеческой жизни и победы над старением. В то же время в книге подробно разобраны популярные в обществе мифы, связанные с внедрением биотехнологий в практику, и причины возникновения ложных опасений.

Александр Панчин , Александр Юрьевич Панчин

Научная литература / Химия / Биология / Прочая научная литература / Образование и наука