Читаем Общая химия полностью

Термодинамические величины, характеризующие вещество в его стандартном состоянии, называются стандартными величинами. Изменения термодинамических величин при реакции, в ходе которой исходные вещества в стандартном состоянии превращаются в продукты реакции, также находящиеся в стандартном состоянии, называются стандартными изменениями соответствующих величин. Стандартные величины и их изменения принято обозначать с помощью знака "°". Например, стандартная энтропия обозначается символом S°, стандартное изменение энтальпии — ΔH°, стандартное изменение энергии Гиббса ΔG°.

Стандартное изменение энергии Гиббса реакции связано с константой равновесия реакции уравнением:

При подстановке значения R = 8.314 Дж/(моль·К) величина ΔG° выразится формулой

Это уравнение дает возможность, зная ΔG°, вычислять константу равновесия и, наоборот, по экспериментально найденному значению константы равновесия определять ΔG° реакции. Оно справедливо для любой температуры, но чаще применяется для 25°С ; эта температура принимается в качестве стандартной. Температура указывается при этом нижним индексом

При вычислении стандартных изменений энтальпии и энергии Гиббса реакций обычно используют стандартные энтальпии и энергии Гиббса образования веществ. Эти величины представляют собой ΔH° и ΔG° реакций образования данного вещества из простых при стандартных условиях. При этом, если элемент образует несколько простых веществ, то берется наиболее устойчивое из них (при данных условиях). Энтальпия образования и энергия Гиббса образования наиболее устойчивых простых веществ принимаются равными нулю.

Согласно закону Гесса, стандартное изменение энтальпии реакции (сокращенно: стандартная энтальпия реакции) равно сумме стандартных энтальпий образования продуктов реакции за вычетом суммы стандартных энтальпий образования исходных веществ.

- 194 -

Аналогично стандартное изменение энергии Гиббса реакции (сокращенно: стандартная энергия Гиббса реакции) равно сумме стандартных энергий Гиббса образования продуктов реакции за вычетом суммы стандартных энергий Гиббса образования исходных веществ. При этом все суммирования производятся с учетом числа молей участвующих в реакции веществ в соответствии с ее уравнением.

Таблица 7. Стандартная энтальпия образования и стандартная энергия Гиббса образования некоторых веществ при 298 К (25°С)

Сокращенные обозначения агрегатного состояния веществ: г — газообразное, ж — жидкое, к — кристаллическое.

В табл. 7 приведены значения стандартных энтальпий и энергий Гиббса образования некоторых веществ при 25°С (298 К). Более полные данные этого рода можно найти в справочниках, например, в «Кратком справочнике физико-химических величин» под редакцией А. А. Равделя и А. М. Пономаревой (издание восьмое, 1983 г.).

Пример 1. Вычислить ΔH°298 , тепловой эффект при 298 К и постоянном давлении и ΔG°298 реакции:

Вычисление ΔH°298 и теплового эффекта реакции. Находим в табл. 7 ΔH°обрFe2O3 (-822.2 кДж/моль) и Al2O3 (-1676 кДж/моль) при 298 К и производим алгебраическое суммирование:

Поскольку изменение энтальпии реакции равно по величине, но обратно по знаку ее тепловому эффекту при постоянных температуре и давлении (см. стр. 189), то термохимическое уравнение ракции запишется следующим образом:

При низких температурах знак изменения энтальпии реакции может служить для ориентировочного определения возможного направления реакции. Полученное для рассматриваемой реакции отрицательное значение ΔH° указывает на возможность ее самопроизвольного протекания при достаточно низких температурах; при этом большое абсолютное значение ΔH° позволяет с достаточной вероятностью предполагать, что в условиях, не очень сильно отличающихся от стандартных, эта реакция тоже может протекать в прямом направлении.

Вычисление ΔG°298 реакции. Находим в табл. 7 ΔG°обрFe2O3 (-740.3 кДж/моль) и Al2O3 (-1582 кДж/моль) при 298 К и производим суммирование:

Полученное отрицательное значение ΔG°298 подтверждает вывод, сделанный на основе оценки ΔH°298 реакции. Близость найденных значений ΔH°298 и ΔG°298 связана, в частности, с тем, что при протекании рассматриваемой реакции не меняется число молекул газов (в нашем примере ни исходные вещества, ни продукты реакции не являются газами). При изменении же числа молекул Газов может существенно изменяться энтропия системы (переход в газообразное состояние сопровождается сильным возрастанием молекулярного беспорядка!), вследствие чего значения ΔH° и ΔG° могут не только заметно различаться по величине, но даже иметь разные знаки (см. пример 2). Поэтому в подобных случаях знак ΔH° не может служить определенным критерием направления самопроизвольного протекания реакции.

Перейти на страницу:

Похожие книги

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей
Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

«Сумма биотехнологии» Александра Панчина — это увлекательный научно-популярный рассказ о генетически модифицированных организмах (ГМО), их безопасности и методах создания, а также о других биотехнологиях, которые оказались в центре общественных дискуссий. Из книги вы узнаете все самое интересное о чтении молекул ДНК, возможности клонирования человека, создании химер, искусственном оплодотворении и генетической диагностике, о современных методах лечения наследственных заболеваний с помощью генной терапии, о перспективах продления человеческой жизни и победы над старением. В то же время в книге подробно разобраны популярные в обществе мифы, связанные с внедрением биотехнологий в практику, и причины возникновения ложных опасений.

Александр Панчин , Александр Юрьевич Панчин

Научная литература / Химия / Биология / Прочая научная литература / Образование и наука