Читаем Общая химия полностью

На измерениях температур кипения и замерзания растворов основаны эбуллиоскопический и криоскопический методы определения молекулярных масс веществ. Оба метода широко используются в химии, так как, применяя различные растворители, можно определять молекулярные массы разнообразных веществ.

Пример. При растворении 2,76 г. глицерина в 200 г. воды температура замерзания понизилась на 0,279 градусов. Определить молекулярную массу глицерина.

Находим, сколько граммов глицерина приходится в растворе на 1000 г. воды:

Выражаем моляльность раствора (m) через массу глицерина (p), приходящуюся на 1000 г. воды, и его молярную массу (M)

Подставляем данные в уравнение:

Отсюда молярная масса глицерина М — 92 г/моль, а молекулярная масса равна 92.

- 223 -

Глава VIII. РАСТВОРЫ ЭЛЕКТРОЛИТОВ


81. Особенности растворов солей, кислот и оснований.

В главе VII мы познакомились с законами, которым подчиняются разбавленные растворы. Справедливость этих законов подтверждается результатами многих экспериментов. Однако имеются вещества, растворы которых сильно отклоняются от всех рассмотренных законов. К подобным веществам относятся соли, кислоты и щелочи. Для них осмотическое давление, понижение давления пара, изменения температур кипения и замерзания всегда больше, чем это отвечает концентрации раствора.

Например, понижение температуры замерзания раствора, содержащего 1 г NaCl в 100 г воды, почти вдвое превышает Δtзам, вычисленное по закону Рауля. Во столько же раз и осмотическое давление этого раствора больше теоретической величины.

Как указывалось в § 78, величина осмотического давления выражается уравнением:

P = CRT

Чтобы распространить это уравнение на растворы с «ненормальным» осмотическим давлением, Ванг-Гофф ввел в него поправочный коэффициент i (изотонический коэффициент), показывающий, во сколько раз осмотическое давление данного раствора больше «нормального»:

P = iCRT

Коэффициент i определялся для каждого раствора экспериментальным путем — например, по понижению давления пара, или по понижению температуры замерзания, или по повышению температуры кипения.

Обозначим через Р' осмотическое давление раствора, через Δt'кип — повышение температуры кипения, Δt'зам — понижение температуры замерзания раствора, не подчиняющегося законам Вант-Гоффа и Рауля, а через Р, tкип и Δtзам — значения тех же величин, вычисленные теоретически по концентрации раствора. Поскольку и осмотическое давление, и изменения температур замерзания и кипения пропорциональны числу находящихся в растворе частиц растворенного вещества, то коэффициент i можно выразить отношениями:

Значения коэффициента i, найденные Вант-Гоффом для 0.2 н. растворов некоторых солей по понижению их температур замерзания, приведены в табл. 11.

Таблица 11. Значение коэффициента i для 0.2 н. растворов некоторых солей

Данные табл. 11 показывают, что коэффициент i для различных солей различен. С разбавлением раствора он растет, приближаясь к целым числам 2, 3, 4. Для солей аналогичного состава эти числа одинаковы. Например, для всех солей, образованных одновалентными металлами и одноосновными кислотами, при достаточном разбавлении их растворов коэффициент i приближается к 2; для солей, образованных двухвалентными металлами и одноосновными Итак, соли, кислоты и основания растворяясь в воде, создают значительно большее осмотическое давление, чем эквимолекулярные количества всех остальных веществ. Как же объяснить явление?

Отметим, что аналогичное явление наблюдается в отношении некоторых газов или веществ, переходящих в газообразное состояние. Например, пары пентахлорида фосфора PCl5, иода и некоторых других веществ при нагревании в закрытом сосуде обнаруживают более высокое давление, чем следует по закону Гей-Люссака.

Для газов это явление объясняется диссоциацией. Если, например, PCl5 полностью разложится на PCl3 и Cl2, то понятно, что при неизменном объеме давление, зависящее от числа частиц, должно увеличиться вдвое. При неполной диссоциации, когда только часть молекул подверглась разложению, давление также возрастает, но менее, чем вдвое.

Естественно было предположить, что в растворах, обладающих ненормально высоким осмотическим давлением, молекулы растворенного вещества тоже распадаются на какие-то более мелкие частицы, так что общее число частиц в растворе возрастает. А поскольку осмотическое давление зависит от числа частиц растворенного вещества, находящихся в единице объема раствора, то с увеличением этого числа оно тоже увеличивается.

Такое предположение впервые было высказано в 1887 г. шведским ученым Аррениусом и легло в основу его теории, объясняющей поведение солей, кислот и оснований в водных растворах.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии