Читаем Общая химия полностью

240. Термическая обработка стали.


Термической (тепловой) обработкой стали называется изменение ее структуры, а следовательно, и свойств, достигаемое нагреванием до определенной температуры, выдерживанием при этой температуре и охлаждением с заданной скоростью. Термическая обработка стали — важнейшая операция в технологии стали; она может очень сильно изменить свойства стали. Ей подвергают как готовые изделия, главным образом инструменты и детали машин, так и полуфабрикаты, например, отливки, прокат.

Применяются различные виды термической обработки, придающие стали различные свойства. Важнейшими являются закалка и отпуск.

Закалка осуществляется нагреванием стали до температуры, несколько превышающей температуру превращения перлита в аустенит, выдержкой при этой же температуре и быстрым охлаждением. Закалка придает стали твердость, прочность, но в то же время делает ее хрупкой. Поэтому закаленную сталь обычно подвергают еще одной операции — отпуску. Он состоит в нагревании стали до температуры, при которой еще не достигается превращение в аустенит, выдержке при этой температуре и сравнительно медленном охлаждении. Отпуск — конечная операция термической обработки. В результате закалки и отпуска, проводимых по заданному режиму, сталь получает требуемые механические свойства.

Что представляют собой те процессы, которые протекают в стали при закалке и отпуске? Для ответа на этот вопрос вспомним диаграмму состояния системы Fe—С. На рис. 173 приведена часть этой диаграммы, отвечающая содержанию углерода до 2,14% и температуре до 1147°C. При нагревании стали эвтектоидного состава 0.8% углерода) перлит при 727°C превращается в аустенит. При нагревании стали, содержащей меньшие количества углерода, например 0,4% (структура такой стали состоит из перлита и феррита), при 727°C перлит превращается в аустенит с 0,8% углерода (точка 1 на рис. 173), а при дальнейшем нагревании феррит постепенно растворяется в аустените; содержание углерода в аустените при этом уменьшается в соответствии с линией SG. По достижении точки 2 феррит исчезает, а концентрация углерода в аустените становится равной его общему содержанию в стали.

Аналогично протекают превращения в случае стали, содержащей большие количества углерода, например, 1,4%. Такая сталь состоит из перлита и цементита. При 727°C перлит превращается в аустенит, содержащий 0,8% углерода (точка 3), а при дальнейшем нагревании цементит растворяется в аустените. По достижении точки 4 цементит исчезает, а содержание углерода в аустените становится равным 1,4%.

- 663 -

Рис. 173. Часть диаграммы состояния системы железо — углерод. А — аустенит; Ф — феррит; Ц — цементит; П — перлит.

Таким образом, первый этап закалки — нагревание сопровождается переходом стали в состояние аустенита. Диффузия атомов даже при высоких температурах происходит в твердом теле далеко не мгновенно. Для полноты превращения сталь выдерживают некоторое время при температуре, немного превышающей соответствующую точку на линии GS или SE.

Процессы, протекающие при медленном охлаждении аустенита, обратны только что рассмотренным. Но при быстром его охлаждении эти процессы, связанные с диффузией атомов углерода и железа, не успевают происходить. В результате сталь оказывается в неравновесном состоянии.

При охлаждении аустенит делается термодинамически неустойчивой фазой; при температурах ниже 727°C термодинамически устойчив перлит или перлит с избытком феррита или цементита. Чем больше переохлаждение, тем больше разность энергий Гиббса аустенита и перлита, стимулирующая превращение. Но, в то же время, чем больше переохлаждение (т. е. чем ниже температура), тем медленнее протекает диффузия атомов. В результате одновременного действия этих противоположных тенденций скорость превращения аустенита в перлит оказывается максимальной при небольших переохлаждениях, т. е. при медленном понижении температуры. При больших же переохлаждениях, при быстром снижении температуры скорость диффузионных процессов приближается к нулю и превращение становится невозможным. Однако кристаллическая решетка железа перестраивается при любой скорости охлаждения, так что в результате понижения температуры γ-железо превращается в α-железо. Таким образом, в основе закалки стали лежит превращение аустенита в пересыщенный твердый раствор углерода в α-железе. Эта фаза носит название мартенсита; будучи термодинамически неустойчивой, она не находит отражения на диаграмме состояния.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Путешествие в Страну элементов
Путешествие в Страну элементов

ОТ СОСТАВИТЕЛЕЙЭта книга не учебник и тем более не химическая энциклопедия. Чтобы рассказать обо всех элементах периодической системы, даже останавливаясь лишь на их наиболее характерных чертах, потребовались бы целые тома. Поэтому маршрут нашего путешествия в Страну элементов проходит через ее главные «достопримечательности». Читатель познакомится с теми химическими элементами, которые составляют основное содержание неорганической химии и находят особенно большое применение в разных областях человеческой деятельности.Комсомол — заботливый и требовательный шеф большой химии — объявил Всесоюзный поход за знания. Если «Путешествие в Страну элементов» в какой-то мере пригодится в этом пути — значит книга выполнила свою задачу.

Виталий Васильевич Карелин , Лев Викторович Бобров , Лев Григорьевич Власов , Э. Драгунов , Юрий Иванович Романьков

Химия