Для оценки способности атома данного элемента оттягивать к себе общую электронную пару пользуются величиной относительной электроотрицательности. Чем больше электроотрицательность атома, тем сильнее притягивает он общую электронную пару. Иначе говоря, при образовании ковалентной связи между двумя атомами разных элементов общее электронное облако смещается к более электроотрицательному атому, и в тем большей степени, чем больше различаются электроотрицательности взаимодействующих атомов. Значения электроотрицательности атомов некоторых элементов по отношению к электроотрицательности фтора, которая принята равной 4, приведены в табл. 6*.
Таблица 6. Относительная электроотрицательность атомов
* Относительная электроотрицательность атома не является строго постоянной величиной; она зависит как от валентности, проявляемой атомом в соответствующем соединении, так и от того, с атомами каких других элементов соединен данный атом. Поэтому числа, приведенные в табл. 6, могут служить лишь для оценки направления смещения электронов при образовании молекул.
- 119 -
Рис. 29. Электрическое поле диполя.
Стрелками показаны направления силовых линий.
Как показывает табл. 6, электроотрицательность закономерно изменяется в зависимости от положения элемента в периодической системе. В начале каждого периода находятся элементы с наиболее низкой электроотрицательностью — типичные металлы, в конце периода (перед благородными газами) — элементы с наивысшей электроотрицательностью, т.е. типичные неметаллы. У элементов одной и той же подгруппы электроотрицательность с ростом заряда ядра проявляет тенденцию к уменьшению. Таким образом, чем более типичным металлом является элемент, тем ниже его электроотрицательность; чем более типичным неметаллом является элемент, тем выше его электроотрицательность.
Смещение общего электронного облака при образовании полярной ковалентной связи приводи к тому, что средняя плотность отрицательного электрического заряда оказывается выше вблизи более электроотрицательного атома и ниже — вблизи менее электроотрицательного. В результате первый атом приобретает избыточный отрицательный, а второй — избыточный положительный заряд; эти заряды принято называть эффективными зарядом атомов в молекуле.
Так, в молекуле хлороводорода общая электронная пара смещена в сторону более электроотрицательного атома хлора, что приводит к появлению у атома хлора эффективного отрицательного заряда, равного 0,17 заряда электрона, а у атома водорода такого же по абсолютной величине эффективного положительного заряда. Следовательно, молекула HCl является полярной молекулой. Ее можно рассматривать как систему из двух равных по абсолютной величине, но противоположных по знаку зарядов, расположенных на определенном расстоянии друг от друга. Такие системы называются электрическими диполями. Хотя суммарный заряд диполя равен нулю, в окружающем его пространстве образуется электрическое поле, изображенное на рис. 29. Напряженность этого поля пропорциональна дипольному моменту молекулы μ, представляющему собой произведение абсолютного значения заряда электрона q на расстояние l между центрами положительного и отрицательного зарядов в молекуле:
μ = ql
Дипольный момент молекулы служит количественной мерой ее полярности. Дипольные моменты молекул обычно измеряют в дебаях (D)*: 1D = 3,33 · 10-30 Кл · м.
* Эта единица названа в честь голландского физика П. Дебая, известного своими работами в области физики твердого тела, рентгеноструктурного анализа и теории полярный жидкостей.
- 120 -
Рис. 30. Дипольные моменты отдельных связей в молекулах типа АВ2 различного строения:
а — линейное строение; б — угловое строение; жирной средней стрелкой показан вектор суммарного дипольного момента молекулы.
Молекула тем более полярна, чем больше смещена общая электронная пара к одном из атомов, т.е. чем выше эффективные заряды атомов и чем больше длина диполя l. Поэтому в ряду сходно построенных молекул дипольный момент возрастает по мере увеличения разности электроотрицательностей атомов, образующих молекулу. Например, дипольный моменты HCl, HBr и HI равны соответственно 1,04; 0,79 и 1,38 D, что связано с уменьшением разности электроотрицательностей атомов при переходе от HCl к HBr и HI (см. табл. 6).
Многоатомные молекулы также могут быть неполярными — при симметричном распределении зарядов или полярными — при асимметричном распределении зарядов. В последнем случае дипольный момент молекулы будет отличаться от нуля. Каждой связи в многоатомной молекуле можно приписать определенный дипольный момент, характеризующий ее полярность; при этом следует принимать во внимание не только величину дипольного момента, но и его направление, т.е. рассматривать дипольный момент каждой связи как вектор. Тогда суммарный дипольный момент молекулы в целом можно считать равным векторной сумме дипольных моментов отдельных связей. Дипольный момент обычно принято считать направленным от положительного конца диполя к отрицательному.