Очевидно, что в намного более сложной системе человечества не только гораздо сложнее проследить и просуммировать все явления, определяющие его рост, но и гораздо труднее повлиять на ход событий в предвидимом будущем, которое в значительной мере определено поведением человечества как развивающейся динамической системы. Именно в силу таких обстоятельств развитый феноменологический подход представляется обещающим, несмотря на указанные ограничения и статистическую природу законов, управляющих ростом и развитием. Это тем более верно, что речь идет об основных явлениях, характеризующих рост человечества, и мотивах репродуктивного поведения самого человека.
Глава 3. Описание модели
3.1 Принципы моделирования
3.2 Линейный и экспоненциальный рост
3.3 Гиперболический рост населения мира
3.4 Закон квадратичного роста
3.5 Информационная природа роста
3.6 Резюме результатов математических расчетов
Hам не дано предугадать, как слово наше отзовется...
В главе изложены принципы построения математических моделей на примере линейной, экспоненциальной и нелинейной (квадратичной) зависимости роста населения от времени. Увеличение всего населения Земли происходит по гиперболическому закону и устремляется в бесконечность за конечное время. Скорость роста, пропорциональная квадрату численности населения Земли, приводит к представлению о коллективном взаимодействии, в основе которого лежит обмен информацией.
Создание модели состоит в последовательном применении принципов системного развития по отношению к фактическим данным, которыми мы располагаем. Цель не в подгонке формул к численным данным, а в поиске математических образов, которые выражают поведение системы и соответствуют поставленной задаче. Поэтому представление о системе и о законах ее развития являются существенной частью исследования.
На каждом шаге следует учитывать, что как сами данные, так и модель только приближенно описывают действительность. Эту степень приближения следует оценивать, и на ее основе определять применимость тех или иных представлений. Возможно, этот процесс последовательного построения моделей более всего развит в теоретической физике. Однако перенесение таких методов построения моделей, которые могли бы претендовать на то, чтобы дорасти до статуса теории, в область исследования динамики населения далеко не очевидно, скорее даже невероятно.
Прежде чем рассматривать результаты теории роста человечества, обратимся к двум простым моделям -- линейного и экспоненциального роста. В настоящее время (в 1999 г.), при населении мира в 6 млрд и приросте в 85 млн в год, линейный рост (рис. 3.1, A), экстраполированный в недавнее прошлое, приводит к тому, что 6.
109:85.106 = 70 лет тому назад (в год рождения автора) все должно было бы начаться с нуля! Таким образом, линейная экстраполяция может дать удовлетворительные результаты на один -- два года, но в наше время демографического перехода продление ее даже на поколение не допустимо ни в прошлое, ни в будущее.Рассмотрим экспоненциальный рост (рис. 3.1, B). Предполагая, что человечество в прошлом удваивалось за те же 40 лет, что и сегодня, оценим, когда такой процесс мог начаться. Для этого выразим численность населения мира, как степень двойки: 6.
109 232. Значит, 32 поколения или 40*32=1280 лет тому назад, в VII в., за 200 лет до крещения Руси, все могло начаться с Адама и Евы! Даже если мы увеличим время удвоения в 10 раз, то этот момент отодвинется к началу неолита, когда население мира уже было порядка 10 млн (см. рис 5.2).Заметим, что рост по геометрической прогрессии или развитие по логистическому закону [83, 134, 152] описываются линейными уравнениями. Но экспоненциальный рост и экспоненциальная асимптотика логистики не удовлетворяют условию масштабной инвариантности. В этом случае есть внутренний масштаб -- время Te
роста в e=2,72 раз или время удвоения T2=0,7Te. Линейный рост, однако, удовлетворяет условию масштабной инвариантности, так как для него нет такого характерного времени.Логистическую кривую часто используют для описания развития систем, претерпевающих переход от роста к насыщению. Обычно графики, с тем или иным успехом, подгоняют под данные вблизи области перехода и не обращают внимания на то, как эта зависимость описывает поведение системы вдали от этой области (см. рис. П.7). Однако для сложных и существенно нелинейных систем развитие вдали от критических точек перехода, так называемое асимптотическое поведение, характеризует собственную динамику системы и должно в полной мере учитываться при описании роста и переходного процесса.