Любой прибор имеет диапазон измерений, и на практику случаются (чаще в социологии) ситуации, когда диапазон охватывает только основную область измерений. В социологии крайние выборы на шкале бывают сформулированы не в виде диапазона, а в виде одностороннего ограничения. Например, «ваш доход за прошлый месяц — до 100, 101–300, 301-1000, 1001–3000, более 3001». В этом-то случае количества выбравших тот или иной ответ — это просто интегралы по соответствующим диапазонам, но вот более сложный случай. Пусть мы проводим экзамен и вот количества решивших то или иное количество задач: 0 задач — 10, 1, 2, 6 и 7 задачи — по 1, 3 и 5 задач — по 3, 4 задачи — 10, 8 задач — 0. Означает ли это, что у нас бимодальное распределение с медианами 0 и 5? Нет, это означает, что трудности задач были таковы, что именно эти количества респондентов рашали именно эти количества задач. Определение набора оптимальных по трудности задач, исходя из априорной (скорее всего — нормальной) функции распределения и конкретных требованиях по отбору (обычно — разбиение на группы, часто на две) — нерешенная задача. Скорее всего, решить ее в такой постановке и невозможно, ибо понятие трудности задачи не универсально: задача описывается не одним параметром.
В реальной ситуации могут встретиться и неунимодальное распределение, поскольку как в медицине, так и в технике случаются фиксированные «поломки», формирующие свою функцию распределения, скорее всего — нормальную, но с другим средним значением.
При проведении измерений иногда случаются грубые ошибки, вызванные неправильными действиями оператора, так называемые «промахи». Например, отсчет азимута с ошибкой 180° при топографической съемке в спелеологии, отсчет с «не той» шкалы в многопредельных приборах. При проведении практических измерений такие ошибки обычно замечаются сразу — на основе предшествующих измерений или исходной информации — и сразу же и отбрасываются. Цивилизованная же процедура исключения промахов такова: сначала вычисляется среднеквадратичное отклонение ц (в предположении, что распределение нормальное!), а потом отбрасываются все измерения, отклоняющиеся от среднего больше, чем на 3ц. Оснований для таких действий два: «промахи» относительно слабо влияют на среднее и дисперсию и, скажем при 20-и измерениях для нормального распределения выход результата за указанные границы происходит с вероятностью 0,01.
Когда после обработки результатов измерений мы указываем для искомой величины одно значение, это называется «точечная оценка». Часто этим нельзя ограничиться, а нужно еще указать и вероятность, с которой искомая величина находится в тех или иных пределах, так называемые «доверительную вероятность» и «доверительный интервал». Если наше распределение нормально, то при доверительной вероятности 0,8–0,9-0,95-0,99-0,999 доверительный интервал составляет 1,3–1,6-2,0–2,6-3,3 ц.
На практике часто искомая величина вычисляется по результатам измерения нескольких величин, то есть осуществляются косвенные измерения. В этом случае, согласно школьному курсу физики, если величины складываются или вычитаются, то абсолютные погрешности складываются, а если перемножаются или делятся, то складываются относительные погрешности. Если же производятся прямые многократные измерения одной и той же величины, то появляется возможность уменьшения относительной погрешности. А именно, относительная погрешность убывает пропорционально корню из количества измерений, то есть усреднение скажем 10 измерений уменьшает случайную погрешность в 3 раза. При наличии серий измерений, имеющих разную точность, измерения, имеющие меньшую дисперсию, следует учитывать с большими весами. Хотя на практике скорее попытаются увеличить количество измерений, выполненных с меньшей дисперсией.
Существенная часть измерений выполняет в цивилизации функцию контроля. Это означает, что результат обработки данных такого измерения должен быть бинарен: годен — или нет, свой — или чужой, любит — или не любит. В этом случае полная схема возможных ситуаций это четыре варианта: принятие годного, отклонение негодного, пропуск негодного — «пропуск атаки» и отклонение годного — «ложная тревога». Обычно в системе есть управляемый параметр, чувствительность, от которого и зависит ее поведение. При малой чувствительности нет ложных тревог, но есть пропуски атаки. При высокой чувствительности все наоборот, и пьяная ворона легко канает за МБР, а стая — даже за разделяющиеся головные части. Оптимальная чувствительность зависит от цены той и другой ошибки, реальной ситуации — частоты ложных тревог и от нашей гипотезы относительно частоты атак. Как мы видим, и здесь играет роль исходная гипотеза.
Конкретные измерения
Электрические измерения: напряжение, ток, сопротивление, мощность
Измерять в быту электрические параметры приходится не часто, а некоторым — и никогда.