Читаем Очерки о Вселенной полностью

Мощность этого излучения крайне мала, но в газах космического пространства электронов и протонов бывает множество и в сумме они иногда дают значительное радиоизлучение. Изменение скорости электронов и протонов может происходить и под действием магнитного поля. Оно заставляет электрон двигаться по спирали, и испытываемое им при этом ускорение порождает электромагнитное излучение, в частности, радиоизлучение. Это - процесс магнитотормозного излучения, и он также встречается в Космосе, где есть магнитные поля. В случае, когда электроны несутся со скоростью, близкой к скорости света, в магнитном поле тоже возникает магнитотормозное излучение, но с гораздо большей энергией. Оно называется синхротронным по названию применяемого в ядерной физике сооружения - ускорителя частиц - синхротрона, где такое излучение впервые наблюдалось. Электроны же, скорость которых близка к скорости света, называются релятивистскими. Синхротронное излучение тоже обнаружено в Космосе. Все перечисленные выше виды радиоизлучения образуют в радиодиапазоне частот такой же непрерывный, сплошной спектр, какой наблюдается в спектральном анализе. К сожалению, сплошное радиоизлучение небесных светил не доходит до нас целиком из-за его поглощения в земной атмосфере. Точнее, радиоволны поглощаются верхними наэлектризованными слоями атмосферы, называемыми ионосферой.

Окно прозрачности в ионосфере оставляет доступными для излучения длины волн от 16-20 м до 1г/4 см. Микрорадиоволны длиною около 1 мм проходят через атмосферу уже плохо. На этот раз им мешают не наэлектризованные слои воздуха, а водяной пар в атмосфере. Такие волны примыкают к тепловым волнам, а они, как известно, поглощаются водой очень сильно. Вот через это «радиоокно» мы только и выглядываем, если хотите - прислушиваемся, к тому, что делается в радиодиапазоне за пределами земной атмосферы. Только в этом диапазоне возможна и посылка радиосигналов с Земли в Космос. С межпланетных космических кораблей за пределами земной атмосферы теперь стал возможен прием и передача радиосигналов на любых частотах, но пока космические корабли еще не могут брать с собой на борт такую мощную радиоаппаратуру и такие запасы энергопитания, которые нужны для изучения очень слабого или очень далекого космического радиоизлучения.

Частота, на которой ведется широковещательная передача, в радиоприемнике преобразуется в звуковую частоту, в шум. Когда есть много помех, эти посторонние шумы заглушают интересующий нас концерт, особенно, если он передается слабой станцией или очень издалека. И в радиоастрономии говорят о шумах. Эти шумы создаются множеством процессов в Космосе; ведь пространство между небесными телами, называемое безвоздушным, не пусто. В нем носятся заряженные электрические частицы, в нем есть магнитные поля. Шумят и наша атмосфера и даже сам радиоприемник. Бороться с этими шумами и выделять из них нужное нам радиоизлучение какого-либо небесного тела - в этом и состоит основная задача радиоастронома. С усилением чувствительности радиоприемника возрастает, вообще говоря, и шум.

Запись радиоизлучения сейчас делается автоматически при помощи самописцев. Перо прибора на движущейся бумажной ленте записывает «уровень», т. е. силу поступающего сигнала. Шум изображается зубчатой полоской, а сигнал - пиком над нею, тем белее высоким, чем сигнал сильнее. Обработка таких записей - сложное дело. В частности, приходится учитывать особенности радиоприема. Часто прибор реагирует не только на тот излучатель, на который он направлен, но и на некоторые излучатели, расположенные в стороне, хотя и с меньшей чувствительностью. Так астрономы «слушают» радио-шумы и радиоизлучение. Антенна радиотелескопа - как бы ухо астронома.

Чем больше «ухо» радиотелескопа, чем больше его антенна, тем больше энергии, идущей от далеких светил, она улавливает. Антенны радиотелескопов бывают очень различных конструкций. Больше всего похож на оптический телескоп-рефлектор радиотелескоп, имеющий главной частью такое же зеркало, но металлическое. Это гигантская чаша, в фокусе которой, где собирается излучение, помещен облучатель - небольшая антенна. От нее энергия по волноводу передается в помещение, где находится приемная аппаратура. Зеркало направляется на желаемый участок неба из этого помещения путем нажатия нужных кнопок, управляющих электрически движением телескопа. Отличие радиотелескопа от оптического телескопа состоит в том, что облака для него не помеха. Радиоволны проходят и через них. Облака не прерывают наблюдений, но как утомительны непрерывные наблюдения в течение долгой зимней ночи!

Рис. 20. Радиотелескоп обсерватории Джодрелл Бэнк (Англия) диаметром 76 м

Перейти на страницу:

Похожие книги

Космическая академия
Космическая академия

В книге освещена малоизвестная для широкого круга читателей область космонавтики, связанная с отбором, обучением, психологической, летной и инженерной подготовкой космонавтов. Отражены практически все направления сложившейся за последние 23 лет системы подготовки космонавтов. Книга даст ясное представление о том, как воспитываются и формируются профессиональные специалисты высокого класса. Последовательно раскрыты этапы становления личности космонавта, начиная с отбора кандидатов в космонавты, прохождения ими общекосмической подготовки с привлечением различных технических средств.Для широкого круга читателей.

Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский

Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука
Воображаемая жизнь (ЛП)
Воображаемая жизнь (ЛП)

Книга 2019 года, в которой двое учёных (профессор физики и профессор астрономии) предлагают читателю совершить воображаемое путешествие по экзопланетам различных типов в поисках жизни на них. Охарактеризованы планеты различных типов - полностью замороженные, водные, с повышенной силой тяжести, в приливном захвате, и т. д. Для каждого типа экзопланет анализируется возможность возникновения жизни, наиболее вероятные места её возникновения и пути её эволюции. Также авторы касаются проблемы жизни в целом, законов природы, которые отвечают за формирование планет и их среды. Отдельные главы книги посвящены анализу возможности возникновения "нестандартных" видов жизни - на основе иных элементов (не углерода), неорганической и искусственной жизни. Книга рассчитана на широкий круг читателей.

Джеймс Трефил , Майкл Саммерс

Астрономия и Космос / Образование и наука