Читаем Очерки о Вселенной полностью

Альфа-частицы поставляются радиоактивными атомами, но еще более «бронебойные», лучше сказать, «ядернобойные» снаряды получаются от искусственно получаемых и разгоняемых протонов и ядер тяжелого водорода (дейтронов).

Для этой цели служат мощные ускорительные установки: циклотроны, линейные ускорители, синхроциклотроны, бетатроны, синхрофазотроны. С их помощью протоны, дейтроны и электроны разгоняются до огромных энергий, сравнимых с энергией космических лучей.

Нейтроны, не имеющие заряда и не отталкиваемые ядрами, еще лучше проникают в их недра и действуют еще разрушительнее. Пригодны для этой цели и «жесткие» -лучи

За последние годы было искусственно произведено множество ядерных реакций. Из них особый интерес представили те, которые привели к новым радиоактивным ядрам. Новые ядра оказались крайне неустойчивыми, распадающимися уже самопроизвольно (т. е. без всякого внешнего воздействия, под влиянием внутренних причин) и очень быстро, отчего они и не встречались в природе. В конце концов у каждого элемента был найден один или несколько радиоактивных изотопов. Однако большинство этих «искусственных» радиоактивных ядер излучает не -частицы, а выбрасывает только электроны либо позитроны.

При искусственном преобразовании элементов, связанном с разрушением ядер, разрушающая частица необходимо должна иметь большую энергию, она должна нестись быстро, и этот разгон ей придается в лаборатории искусственно созданным электрическим полем. В природе же необходимую для разрушения ядер скорость разрушающим частицам дает высокая температура. Повышение температуры газа, как известно из физики, приводит к более оживленным движениям составляющих его молекул или атомов. Их скорости можно вычислить, зная температуру газа, а отсюда, зная массу атомов, легко определить энергию их движения, которая потом идет на работу разрушения ядер.

Конструкторы бронебойного оружия, зная массу пули, рассчитывают ту скорость, которую ей надо сообщить, чтобы она могла пробить броню, заданной толщины. Подобно этому, мы можем рассчитать температуру, при которой энергия движения разрушающих частиц достаточна для проникновения их в недра атомных ядер.

Например два протона, несущихся навстречу друг другу, могут преодолеть взаимное отталкивание (усиливающееся при сближении) лишь при скорости, обусловленной температурой в 55 млн. градусов. Где же могут быть такие температуры?! Их нет не только в лаборатории, но и на поверхности звезд. Лишь в их недрах можем мы ожидать найти такие температуры, и к этому нас приводили любые теории внутреннего строения звезд еще задолго до того, как мы стали разбираться в ядерных реакциях. Там, в этих таинственных и невидимых недрах, вес вышележащих слоев звездной материи создает чудовищное давление и высокую плотность газа. В адской тесноте бешено носящиеся частички сталкиваются друг с другом и «обламывают друг другу бока» в том смысле, что уж внешние-то части атомов, т. е. их электронные оболочки, непрерывно от них отрываются. При этих температурах и давлениях ядра всех легких атомов должны обнажиться, так что в образовавшейся туче обломков оторванных, свободных электронов еще больше, чем ядер. Кому-нибудь из них удастся подхватить пролетающий мимо электрон, но ненадолго. Следующее же столкновение возвращает атомное ядро к его одиночеству. В земных и лабораторных условиях оболочки из внешних электронов, как щит, отчасти защищают ядра от роковых столкновений, в недрах же звезд только взаимное отталкивание служит этому помехой. Лучше всего защищены от ударов ядра тяжелых элементов, у которых большой заряд ядра и поэтому большая отталкивательная сила.

Интересно отметить следующее свойство этого как бы «искрошенного» вещества, составляющего самые недра звезд. При вычислении величин, характеризующих разные физические условия и события в недрах звезд, играет важную роль средний атомный вес частиц, их образующих. Казалось бы, он должен сильно зависеть от пропорции разных химических элементов, потому что атомный вес водорода 1, а урана 238. Это как будто напоминает задачу о среднем весе неизвестных фруктов в закрытой корзине, где могут быть и вишни, и яблоки, и арбузы. Однако при полной ионизации атомов в недрах звезд каждый из них раскалывается на Z+1 частицу (1 ядро и Z электронов), если атомный номер атома равен Z. Тогда атомный вес смеси атомных обломков получается не А, а А:(Z+1) и, например, для чистого водорода составляет 1/2, а для чистого урана 2,6.

Таким образом, незнание точного химического состава звездных недр мало влияет на оценку величины среднего атомного веса частиц. Тяжелых атомов там не может быть очень много, и главную роль играет то или иное содержание водорода. Ряд данных заставляет считать, что Солнце по крайней мере на 50% состоит из водорода (по массе) и, следовательно, ввиду легковесности водородных атомов они составляют там подавляющее большинство, так что средний атомный вес в звездных недрах должен быть близок к 1.

Перейти на страницу:

Похожие книги

Космическая академия
Космическая академия

В книге освещена малоизвестная для широкого круга читателей область космонавтики, связанная с отбором, обучением, психологической, летной и инженерной подготовкой космонавтов. Отражены практически все направления сложившейся за последние 23 лет системы подготовки космонавтов. Книга даст ясное представление о том, как воспитываются и формируются профессиональные специалисты высокого класса. Последовательно раскрыты этапы становления личности космонавта, начиная с отбора кандидатов в космонавты, прохождения ими общекосмической подготовки с привлечением различных технических средств.Для широкого круга читателей.

Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский

Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука
Воображаемая жизнь (ЛП)
Воображаемая жизнь (ЛП)

Книга 2019 года, в которой двое учёных (профессор физики и профессор астрономии) предлагают читателю совершить воображаемое путешествие по экзопланетам различных типов в поисках жизни на них. Охарактеризованы планеты различных типов - полностью замороженные, водные, с повышенной силой тяжести, в приливном захвате, и т. д. Для каждого типа экзопланет анализируется возможность возникновения жизни, наиболее вероятные места её возникновения и пути её эволюции. Также авторы касаются проблемы жизни в целом, законов природы, которые отвечают за формирование планет и их среды. Отдельные главы книги посвящены анализу возможности возникновения "нестандартных" видов жизни - на основе иных элементов (не углерода), неорганической и искусственной жизни. Книга рассчитана на широкий круг читателей.

Джеймс Трефил , Майкл Саммерс

Астрономия и Космос / Образование и наука