Читаем Одна формула и весь мир полностью

Превращение фразы № 4 сначала во фразы № 3 и № 2, а затем во фразу № 1 — это модель перехода всякой упорядоченной системы в состояние термодинамического равновесия, то есть такого хаоса, при котором энтропия становится максимальной, а вероятности выравниваются, приближаясь к условию

р1 =р2= .. =рn= 1/n

Теперь попробуем на те же фразы посмотреть в обратном порядке, перемещая взгляд сверху вниз, от фразы № 1 к фразе № 4. Перед нами предстанет модель всех накапливающих порядок антиэнтропийных процессов Элементы системы (в рассматриваемом случае система — это текст, а элементы системы — отдельные буквы) сначала следуют друг за другом в любых сочетаниях, не соблюдая правил, не «обращая внимания» на то, какие элементы появились до них (фраза № 1). Первый проблеск порядка появился после того, как частоты появления элементов системы стали соответствовать вероятностям появления тех же элементов в структуре реальных упорядоченных систем (фраза № 2). Порядок в системе существенно увеличился после того, как стали учитываться вероятности сочетаний ее элементов, определяемые правилами образования слогов в тексте (фраза № 3).

«Полный порядок» образовался с того момента, как стали учитываться все правила русского языка (фраза № 4).

С каждым шагом от хаоса к упорядоченности все меньше и меньше становится энтропия системы, потому что все больше и больше отличаются друг от друга различные вероятности Pi входящие в формулу энтропии:      

                                   

Стало быть, окинув взглядом сверху вниз таблицу, мы увидели, как протекает типичный антиэнтропийный процесс.

Подобная «антиэнтропийная метаморфоза» может происходить не только с текстом, но и с системами самой разнообразной природы. Например, можно представить себе, как молекулы жидкости, метавшиеся из стороны в сторону в хаотичном броуновском движении, для которого все скорости и направления в равной степени вероятны, начали вдруг выстраиваться в упорядоченные «колонны» и «шеренги» (потому что вероятности направлений движения стали различными) и постепенно образовали сложный, многогранный кристалл. А можно вообразить, как из сумбура нечленораздельных звуков начали образовываться закономерные сочетания (звуковые сигналы), которые постепенно превратились в осмысленные слова.

Как в этих, так и во многих других процессах, приводящих к увеличению порядка в структуре формирующихся систем, происходит накопление информации, количество которой определяется с помощью той же функции

                     

Известный физик Леон Бриллюэн показал, что количество накопленной и сохраняемой в структуре систем информации  в точности равно уменьшению их энтропии

Посмотрим, как это общее правило (так называемый негэнтропийный принцип информации) проявляется на частном примере рассмотренных нами фраз.

С помощью функции  подсчитали, что при переходе от фразы № 1 к фразе № 4 энтропия текста уменьшилась примерно в 5 раз. Для фразы № 1 энтропия (неопределенность появления каждой новой буквы) составляет 5 бит. Во фразе № 2 неопределенность появления каждой буквы уменьшается на 1 бит и составляет 4 бита на букву. Энтропия реальных текстов меньше, чем максимальная энтропия (фраза № 1) на 4 бита. Она составляет около 1 бита на букву[7].

*Все значения энтропии и информации в битах подсчитываются с помощью функции

Пример I. Энтропия сообщений типа «У А. родилась дочка», «В. играет белыми» равна:

= 1 бит

Пример II. Энтропия появления каждой следующей буквы в тексте равна:

Пример III. Для фразы: № 1 выполняется условие PА = Рб =... = Ря= 1/32

Подстановка этих значений pА, рБ, рв,..., ря вобщее выражение примера II дает энтропию 5 бит.

Пример IV. Чтобы определить энтропию фразы №2, достаточно подставить в общее выражение примера II реальные значения вероят­ностей букв в русских текстах (Po= 0,09, Pф=0,002 и др.). В результате такой подстановки получим значение энтропии около 4 бит.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука