…Но вот, во исполнение поступившего с самого «верха» приказа, ракета доставила боевой блок к цели и он «со страшной силой» ударился о землю. Пока удар не превратил блок в подобие жидкости, датчики давления, расположенные в головной части изображенной на рис. 3.7 фиолетовым цветом и хорошо видной на макете рис. 3.10 трубы подают сигнал на подрыв. Выбор головного зазора летящим боевым блоком занимает несколько сот микросекунд и этого вполне хватает, чтобы одновременно сработали от мощного импульса высокого напряжения все детонаторы, огоньки детонации с постоянной скоростью (около 8 км/с) разбежались по канавкам, а пройдя их — нырнули в отверстия и одновременно во множестве точек подорвали заряд (рис. 3.11 а). Далее следует направленный внутрь взрыв (рис. 3.11 в), который сдавливает сборку давлением более миллиона атмосфер. Поверхность сборки уменьшается, в плутонии почти исчезает внутренняя полость (рис. 3.11 г), а плотность его — увеличивается, причем очень быстро — за десяток микросекунд сжимаемая сборка «проскакивает» критическое состояние на тепловых нейтронах и становится существенно сверхкритичной на нейтронах быстрых.
…Не знаю, как решит читатель, по-моему — кинограмма рис. 3.11 выглядит довольно живописно. Но, как говаривал товарищ Семплеяров[21]
: «Разоблачение совершенно необходимо. Без этого ваши блестящие номера оставят тягостное впечатление. Зрительская масса требует объяснения!».«Зрительская масса» наверняка догадалась, что сфотографирован не взрыв настоящего ядерного заряда. Но на кинограмме — вообще не взрыв, а анимация. Вместо взрывчатого вещества использован оранжевый порошок бихромата аммония (с его помощью детям часто демонстрируют «вулкан»), «Плутоний» сделан из подкрашенного черной тушью поролона, а «замедлитель» — из термореактивного кембрика, сжимающегося при нагревании. Начало реакции разложения бихромата инициировано при подключении тока к нихромовой проволоке, взятой из «сгоревшего» паяльника и обернутой вокруг полоски целлулоида, которая уложена по внешней поверхности «заряда». В отличие от детонации взрывчатки, реакция в бихромате идет медленно и можно рассмотреть (и сфотографировать самой обычной, даже «телефонной», камерой), как фронт реакции «сходится» к сборке. Существенная некорректность модели в том, что «плутониевая» сборка становится «сверхкритичной» при сжатии ее нагреваемым кембриком, а не «взрывчаткой».
…Ну, а в настоящей сборке, через период, определяемый ничтожным временем незначительного замедления быстрых нейтронов, каждый из нового, более многочисленного их поколения добавляет производимым им делением энергию в более чем две сотни МэВ в и без того распираемое чудовищным давлением вещество сборки. В масштабах происходивших явлений, прочность даже самых лучших легированных сталей столь мизерна, что никому и в голову не приходит учитывать ее при расчетах динамики взрыва. Единственное, что не дает разлететься сборке — инерция: чтобы расширить плутониевый шар за десяток наносекунд всего на сантиметр, требуется придать веществу ускорение в десятки триллионов раз превышающее ускорение земного притяжения, а такое вовсе непросто. В конце концов, вещество все же разлетается, прекращается деление, но не интересные события: энергия перераспределяется между тяжелыми, ионизованными осколками разделившихся ядер, другими испущенными при делении заряженными частицами, а также электрически нейтральными гамма квантами и нейтронами. Энергия продуктов реакций — порядка десятков и даже сотен МэВ, но только гамма кванты больших энергий и нейтроны имеют шансы избежать взаимодействия с веществом, из которого была сделана сборка и покинуть место, где начинает зарождаться огненный шар ядерного взрыва. Заряженные же частицы быстро теряют энергию в актах столкновений и ионизаций. При этом испускается излучение, правда, уже не «жесткое» ядерное, а более «мягкое», с энергией на три порядка меньшей, но все же более чем достаточной, чтобы «выбить» у атомов электроны — не только с внешних оболочек, но и вообще все. Мешанина из «голых» ядер, «ободранных» с них электронов и излучения с плотностью в граммы на кубический сантиметр[22]
— все то, что мгновение назад было зарядом — приходит в некое подобие равновесия. В совсем «молодом» огненном шаре устанавливается температура порядка десятков миллионов градусов. Если шар захватывает сталь, в ней (именно в ней, а не вокруг нее) поднимается ветер[23].Казалось бы, даже и «мягкое», но двигающееся с максимально возможной скоростью света излучение должно оставить далеко позади вещество, которое его породило, но это не так: в «холодном» воздухе, пробег квантов кэвных энергий составляет сантиметры и двигаются они не по прямой, а, при каждом взаимодействии переизлучаясь, меняя направление движения. Кванты ионизируют воздух, распространяются в нем как вишневый сок, вылитый в стакан с водой.