Заглянув в этот зал, Гейгер остался бы доволен. Человеческий глаз заменила работающая без устали электроника. Попробуйте снять кристалл — это вам не удастся. Он приклеен к трубочке, похожей на флейту. Это фотоумножитель: он превращает слабенькую вспышку света в сильный импульс электрического тока. Импульс тока по тоненькому проводу уходит под пол в большой светлый зал — царство электроники, где засчитывается приборами.
А вот и другие счетчики — черенковские. Когда Эйнштейн установил, что ни одна вещественная частица, ни одно тело не могут двигаться со скоростью не только большей, но и равной скорости света, то он под скоростью света понимал скорость в совершенно пустом пространстве. А в стекле, например? В стекле свет распространяется почти в полтора раза медленнее. И что же, частицы в стекле не могут превысить скорость света?
Над этим никто не задумывался — нужды не было. И долго не было бы этой нужды, если бы в 1934 году молодой советский ученый Павел Александрович Черенков не обратил внимания на слабое свечение. Оно возникало в обыкновенной воде всякий раз, когда в нее влетала быстрая заряженная частица.
Под действием медленных частиц вода не светилась. Так что новое свечение не могло иметь такую же природу, как и то, над которым «мучился» Гейгер.
Черенков рассказал о неожиданной находке своему учителю Сергею Ивановичу Вавилову. Тот поделился известием с теоретиками Игорем Евгеньевичем Таммом и Ильей Михайловичем Франком. И в результате долгих дискуссий через три года в закон Эйнштейна было внесено «уточнение», а в физику — новое явление.
Есть в физике смешно звучащее понятие: «усы Маха». Это действительно усы, но не на лице известного ученого, а, например, на воде. Они расходятся от носа катера, спешащего по реке. Их легко видеть перед носом сверхзвукового самолета.
Причина их появления одна и та же: скорость движения катера превосходит скорость волн на поверхности воды, скорость полета самолета превышает скорость звуковых волн в воздухе. Именно такие «усы» и узрели наши ученые в свечении, обнаруженном Черенковым. Только не водяные, не воздушные, а световые.
Ну что ж, интересное явление, молвили физики и почти забыли о нем. Но, когда физика обратилась к сверхбыстрым частицам, об этом явлении пришлось вспомнить. Оно идеально подходило для регистрации таких частиц.
Для счетчиков Гейгера надо тщательно подбирать и очищать газ. Вспышки света дает не любой кристалл. Черенковский же свет наблюдается в любом веществе, лишь бы оно было прозрачным. И еще одно приятное обстоятельство — порог: если скорость частицы меньше этого порога, то свечения нет. Значит, такой счетчик сразу отсеет частицы, скорость которых меньше скорости света в его веществе. Подбирая ряд разных веществ, можно получить набор таких порогов. Это очень удобно.
И, как запоздалое признание огромной важности этого открытия для физики частиц, Черенкову, Тамму и Франку (Вавилов к тому времени умер) в 1960 году была присуждена Нобелевская премия.
Ученый тем временем подводит нас к новому прибору. От прибора тянутся толстые шланги под пол, местами на его металлической поверхности виден иней. Низкие температуры? Ученый согласно кивает головой и добавляет: минус двести пятьдесят градусов.
Солидно! Что же там замораживают? Водород.
Предупреждая дальнейшие вопросы, ученый начинает пояснение. Камеру Вильсона помните? Помним: там был пересыщенный «неустойчивый» пар. Ну, а здесь такая же «неустойчивая» перегретая жидкость. Чуть-чуть сдвинь температуру или понизь давление, и она бурно закипит.
Но режим подобран так, что жидкость не кипит. Если идеально очистить стенки колбы и налить в нее дистиллированную воду, то, может быть, она не закипит и при 150 градусах. Просто в ней не могут образоваться пузырьки пара.
Вот такая жидкость и здесь в камере — жидкий перегретый водород. Он кипит уже при –253° по Цельсию, оттого и нужна низкая температура.
Но вот в камеру влетела энергичная частица, и путь ее сразу отмечен цепочкой возникших пузырьков пара в прозрачной жидкости. Теперь фотографируйте, но быстро! Пузырьки пара, как и капельки жидкости в камере Вильсона, живо расползаются.
Изобрел такую камеру американский физик, сын выходцев из России, Дональд Глэзер.
Вильсон придумал свою «туманную» камеру, наблюдая за красивым зрелищем рождения облаков в горах. Глэзер же, как говорят его друзья, додумался до пузырьковой камеры, наблюдая рост пузырьков газа на неровностях стенок пивной бутылки! Самые обыденные явления, замечавшиеся тысячи раз, дают наблюдательному уму пищу для раздумий.
Все? Нет, еще вопрос. А в чем преимущества пузырьковой камеры Глэзера перед «туманной» камерой Вильсона?
Жидкость имеет более высокую плотность по сравнению с паром в камере Вильсона, значит, и событий в пузырьковой камере случается и регистрируется гораздо больше. Кроме того, еще очень удобно, что столкновения частиц можно изучать на самых простых ядрах — ядрах водорода.