В нашем примере они касались понятий о местоположении и скорости электрона. Существуют и другие подобные соотношения. Одно из них, например, говорит, что, измерив точно энергию атомной частицы, нельзя сказать, в какой точно момент времени частица имела эту энергию. И наоборот, засекая точно время измерения, нельзя точно измерить энергию частицы.
Другое соотношение говорит, что нельзя одновременно со сколь угодно высокой точностью измерить потенциальную и кинетическую энергию частицы. Это и понятно: потенциальная энергия зависит от местоположения, кинетическая — от скорости частиц. А положение и скорость частицы одновременно абсолютно точно определить нельзя.
Но почему же тогда физики не заменят старые, отслужившие понятия новыми, более соответствующими атомному миру? Ответ на этот вопрос дается самим ходом развития человеческого знания.
Одна из величайших драм физики в том и состоит, что сами ученые с физической точки зрения — большие, «классические» предметы, обитающие в столь же большом мире. Ученых повседневно и повсеместно окружают явления, протекающие по классическим законам. Поэтому и понятия, складывающиеся в их головах, тоже имеют классический характер. Так, во всяком случае, обстояло дело с понятиями до начала нашего века, до прорыва в атомный мир.
Всем вещам в мире присуща инертность. И даже столь подвижная человеческая мысль не исключение. Очень трудно отказаться от понятий, имеющих почву в окружающем нас мире больших вещей, и выработать «нечувственные» представления о невидимом, неслышимом, неосязаемом мире, который, однако, существует ничуть не менее реально, чем большой мир. Мы уже говорили о том, что понятия, все же выработанные вопреки этим трудностям, — замечательная заслуга ученых.
Но сам процесс этот страшно тяжел, развивается очень медленно, новые понятия все еще несовершенны. Они зачастую несут на себе следы той самой половинчатости, в которой упрекали когда-то теорию Бора. Избавиться от этой половинчатости — дело науки ближайшего, а может быть, и отдаленного будущего.
Все же новые представления во многом истинны. С их помощью ученые смогли предсказать события, совершенно немыслимые в классическом мире. Об одном из них мы сейчас и расскажем.
…В саду за высоким забором растут яблоки. Возле забора с тоской в глазах прохаживается мальчишка. Уж очень желателен плод запретный! Но перелезть через высокий забор, кажется, нет никакой возможности.
Вы можете подойти к мальчишке и с сожалением сказать: «Эх, отчего ты такой большой и тяжелый! Вот будь ты в триллионы раз легче, ты бы сам по себе, без малейшего усилия, смог бы оказаться по ту сторону забора». После этой фразы мальчишка от удивления и думать перестал бы о яблоках.
Но как понять эти странные слова? Мы привыкли с полным основанием считать, что сквозь стены проникнуть невозможно. Такое бывает только в сказках. Вот и мальчишка подтверждает: «Что вы мне сказки рассказываете!» А все-таки это не сказки, а одно из замечательных открытий квантовой механики. Понятное дело, это возможно только для очень маленьких и легких частиц, которые и изучаются квантовой механикой.
Для классической физики «просачивание сквозь стены» — действительно чепуха, вещь абсолютно немыслимая. Такое явление противоречило бы не только здравому смыслу, но и основным законам физики.
Частица может преодолеть стенку, встретившуюся на ее пути, одним-единственным способом: перемахнуть через нее, набрав достаточную энергию. Если же энергии не хватает, то частица, налетев на стенку, должна отлететь обратно.
Совсем так, как отскакивает от борта бильярда шар, или как отражаются волны света от хорошего зеркала. Но не забудем, что каждой частице сопутствует особая волна — волна де-Бройля.
Как обстоит дело с зеркалами для этих необычных волн? Оказывается, такие зеркала существуют в виде стенок для частиц. Только эти стенки могут быть и невидимыми и неосязаемыми. Например, для электронов, находящихся в металле, такими стенками является наружная поверхность металла, а для частиц, находящихся в атомных ядрах, условная «поверхность» ядер.
Ученые назвали стены домов, в которых живут семьи атомных частиц, барьерами, а сами дома — неуважительно — ямами. Картинка действительно напоминает нам шарик в ямке, отделенной земляной насыпью от окружающего пространства.
Квантовая механика знает два рода барьеров. Одни барьеры могут быть хоть и невысокими, но бесконечно длинными: они похожи на лестничные ступеньки — имеют только одну переднюю сторону. Другие барьеры скорее похожи на заборы: они могут быть хоть и высокими, но имеют ограниченную ширину.
Барьеры первого рода для волн материи оказываются идеальными зеркалами. А второго рода напоминают зеркала, побывавшие в длительном употреблении, когда отражающий слой на них частично стерся. Обычные зеркала при этом слегка пропускают свет. Атомные зеркала оказываются чуть-чуть прозрачными для де-бройлевских волн.