Следующее важнейшее открытие: при развале каждого ядра урана появляется несколько свободных нейтронов. Часть из них покидает кусок урана, уходит в воздух, но часть остается блуждать в куске. В уране всегда есть свободные нейтроны. И если увеличивать массу и размеры этого куска, то в конце концов наступит такой критический момент, когда число рождающихся в куске нейтронов превысит число ускользающих из него. Не нужна никакая бомбардировка урана нейтронами извне! Их поставляет сам же уран. А когда его размеры и масса приближаются к критическим, уран становится взрывоопасным. В нем должна начаться цепная реакция деления. И незадолго перед войной первый расчет такой реакции выполняют советские ученые, ныне академики, Яков Борисович Зельдович и Юлий Борисович Харитон.
Началась не виданная еще в науке лихорадочная гонка. В нее включились большие научные коллективы и огромные промышленные предприятия. Первый этап этой гонки выиграла группа Ферми. 2 декабря 1942 года под сводами заброшенного стадиона в Чикаго эти люди пустили в ход первое в истории человечества искусственное ядерное солнце.
Здесь нет нужды описывать первые годы атомного века. Они и без того хорошо известны. Нейтрон вошел в жизнь человечества, окруженный «ореолом» чудовищных взрывов американских атомных бомб над Хиросимой и Нагасаки, в еще более чудовищных огненных смерчах испытаний водородных бомб.
Но в те же годы над потрясенным миром зажглась и заря надежды. В Советском Союзе большая группа ученых под руководством Игоря Васильевича Курчатова ввела в строй первую в мире атомную электростанцию. Начал взламывать тяжелые льды Арктики атомоход «Ленин».
Нейтрон включился в работу на благо мира. Эта работа колоссальна. Нейтрон — самая «работящая» частица атомного мира после электрона и фотона. Он дробит ядра в топках атомных электростанций и атомных двигателей. Он создает искусственные радиоактивные элементы, которые нашли широчайшее применение в науке и технике сегодняшнего дня — от обнаружения дефектов в изделиях рук человеческих до излечения дефектов самого тела человека. Он исследует недра земные, ищет нефть и другие ценнейшие ископаемые.
И, заканчивая первую часть нашей повести о самой драматической частице в истории физики, можно сказать: большая жизнь нейтрона — впереди!
А теперь вторая часть истории нейтрона. Для естествознания она ничуть не менее важна, чем первая.
Глава 6
Возвращение в космос
Нейтрон… На него набросились не только одни экспериментаторы. Его появление отпраздновали и теоретики. Отпраздновали своеобразно — тут же заставили его работать в поте лица своего.
То, что нейтрон явился на свет свободным, их не смутило. Отныне нейтрону предстояло выполнить самую тяжкую и самую благородную работу на свете: предохранять ядерные семьи от развала на отдельные протоны.
Так… Смена караула в ядрах. Действительно, самая благородная задача. Если бы чудом образовавшиеся ядра тут же разваливались на отдельные кирпичи, в мире не могло бы существовать ни единого вещественного предмета. Он представлял бы собою скопище проносящихся друг мимо друга протонов и электронов, в лучшем случае — атомов водорода. Единственной твердью в таком мире мог бы быть один лишь твердый водород при температуре, недалекой от абсолютного нуля. Да, неуютная картина мироздания!
Природа, однако, оказалась щедрее на выдумку. Она создала великое разнообразие ядер — от водорода до урана и даже включила в него сверхтяжелые заурановые элементы. И все это разнообразие должно быть обязано нейтрону.
Так заявили в том же году, когда был открыт нейтрон, один из создателей квантовой механики Вернер Гейзенберг и молодые советские ученые Игорь Евгеньевич Тамм и Дмитрий Дмитриевич Иваненко. Заявление это было чрезвычайно смелым. Ведь с самого начала было ясно, что нейтрон — электрически незаряженная частица, что взаимодействовать с заряженным протоном электрическими силами она не имеет возможности.
Но роль стража, безразличного к тому, как протоны разлетаются в разные стороны, вовсе не предназначалась нейтрону. Нейтрон и протон взаимодействуют, но не электрическими, а какими-то иными, покуда неизвестными силами, предположили создатели новой модели атомного ядра.
Пока теоретики ломают головы над природой загадочных сил, действующих в атомных ядрах, прежде всего делаются оценки величины этих сил. Из изучения столкновений протонов с нейтронами, хотя бы в том же парафине, довольно точно удается оценить массу нейтрона. Нет, она не равна массе протона, как это полагал Резерфорд, а больше ее. Правда, на совсем небольшую величину — всего лишь примерно на одну тысячную.
Теперь можно заняться постройкой ядер. И здесь неоценимую услугу физикам оказывают изотопы, существование которых было обнаружено за двадцать лет до этого первооткрывателем электрона Джи-Джи Томсоном. Так смыкаются научные поколения, так метод, послуживший некогда открытию электрона, теперь позволяет проникнуть в секреты строения ядра.