«Поскольку значение этих измерений сложно переоценить, представители научного сообщества считают, что для полной уверенности нам нужно несколько подтверждений, полученных на разных экспериментах», – считает Карстен Хеегер из Висконсинского университета в Мэдисоне, один из участников коллаборации CUORE. «Если действительно удастся обнаружить нечто подобное, то это будет великое событие», – добавляет он. Действительно, существует несколько причин, по которым открытие безнейтринного двойного бета-распада потрясет основы физики, астрономии и космологии. Во-первых, это открытие будет означать, что Майорана был прав и нейтрино действительно являются античастицами сами себе. Во-вторых, физики смогут непосредственно измерить абсолютную массу нейтрино, которую не удается определить на протяжении многих десятилетий. Астрономы узнают, обладают ли эти частицы достаточной массой, чтобы из них могли сформироваться первые сгустки материи в ранней Вселенной. В-третьих, такой распад будет свидетельствовать о несохранении лептонного числа, что, как подчеркивает Хеегер, «нарушает фундаментальную физическую симметрию и, следовательно, потребует в корне пересмотреть Стандартную модель». В-четвертых, космологи смогут понять, как в течение первых секунд после Большого взрыва сложилось подавляющее преобладание вещества над антивеществом. Учитывая все эти революционные перспективы, неудивительно, что охотники за нейтрино связывают большие надежды со вторым десятилетием XXI в.
Глава 8
Семена революции
Лето 2012 г. ознаменовалось одним из самых триумфальных открытий в истории физики. Два независимых эксперимента, проводившихся на Большом адронном коллайдере (БАК) в лаборатории CERN, убедительно доказали существование бозона Хиггса – одной из самых неуловимых субатомных частиц, когда-либо предсказанных физиками-теоретиками. Это открытие поставило точку в создании грандиозного свода правил – Стандартной модели физики частиц.
Но причудливые свойства нейтрино вполне могут обрушить это филигранное творение ученых – как минимум доказать его неполноту. Физики признают, что обнаружение массы у нейтрино, сколь бы малой она ни оказалась, требует уточнить Стандартную модель. Охотники за нейтрино уже ищут следы тех феноменов, которые могли бы привести к такому коренному пересмотру. Открывая все новые особенности природы нейтрино в процессе новейших тонких экспериментов, ученые не только расширяют наши представления о фундаментальных свойствах материи, но и все подробнее узнают, что же происходило в первые, важнейшие секунды после Большого взрыва и какие события разворачиваются во время прощального фейерверка, сопровождающего гибель звезды. В ходе этих опытов физики надеются использовать нейтрино, чтобы зондировать источники тепла, подогревающие Землю изнутри, искать залежи полезных ископаемых и даже препятствовать распространению ядерного оружия. Более того, предполагается, что все эти исследования не станут тяжким бременем для налогоплательщиков, которые в наше время являются основными спонсорами фундаментальной науки.
Поиски бозона Хиггса растянулись на несколько десятилетий и обошлись в несколько миллиардов долларов. Охота за этой частицей началась как довольно невинная затея: в начале 1960-х о ее существовании предположили шестеро физиков, работавших в трех независимых научных группах. По высказанной ими гипотезе, пространство пронизано невидимым силовым полем, благодаря которому некоторые элементарные частицы приобретают массу. Как это часто бывает в фундаментальной физике, данная версия сложилась на основе математических соображений о симметрии в природе. Гипотетическое силовое поле было названо «полем Хиггса» – в честь Питера Хиггса из Эдинбургского университета, одного из шести теоретиков, сформулировавших эту идею. Поле Хиггса является одной из основных составляющих Стандартной модели.