Для измерения уровней шума на рабочих местах в октавных полосах частот и общего уровня шума применяют различные типы шумоизмерительной аппаратуры. Наибольшее распространение получили
Производственный шум нарушает информационные связи, что вызывает снижение не только эффективности, но и безопасности деятельности человека, так как высокий уровень шума мешает услышать предупреждающий сигнал опасности. Кроме того, шум вызывает обычную усталость. При действии шума снижаются способность сосредоточения внимания, точность выполнения работ, связанных с приемом и анализом информации, и производительность труда. При постоянном воздействии шума работники жалуются на бессонницу, нарушение зрения, вкусовых ощущений, расстройство органов пищеварения и т. д. У них отмечается повышенная склонность к неврозам. Энергозатраты организма при выполнении работы в условиях шума больше, т. е. работа оказывается более тяжелой. Шум, отрицательно воздействуя на слух человека, может вызвать три возможных исхода: временно (от минуты до нескольких месяцев) снизить чувствительность к звукам определенных частот, вызвать повреждение органов слуха или мгновенную глухоту. Уровень звука в 130 дБ вызывает болевое ощущение, а в 150 дБ приводит к поражению слуха при любой частоте.
Предельно допустимые уровни (ПДУ) действия шума на человека гарантируют, что остаточное понижение слуха после 50 лет работы у 90 % работающих будет менее 20 дБ, т. е. ниже того предела, когда это начинает мешать человеку в повседневной жизни. Потеря слуха на 10 дБ практически не замечается. Предельные уровни шума при воздействии в течение 20 мин следующие:
Наиболее характерным и широко распространенным источником низкоаккустических колебаний являются компрессоры. Отмечается, что шум компрессорных цехов является низкочастотным с преобладанием инфразвука, причем в кабинах операторов инфразвук становится более выраженным из-за затухания более высокочастотных шумов. Источниками инфразвуковых колебаний являются также мощные вентиляционные системы и системы кондиционирования. Максимальные уровни звукового давления достигают 106 дБ на 20 Гц, 98 дБ на 4 Гц и 85 дБ на частотах 2 и 8 Гц.
В салонах автомобилей наиболее высокие уровни звукового давления лежат в диапазоне 2—16 Гц, достигая 100 дБ и более. При этом если автомобиль движется с открытыми окнами, уровень может значительно возрастать, достигая 113–120 дБ в октавных полосах ниже 20 Гц. Открытое окно при этом играет роль так называемого резонатора Гельмгольца.
Высокие инфразвуковые уровни имеют место в шуме автобусов, составляя 107–113 дБ на частотах 16–31,5 Гц при общем уровне шума 74 дБ. Инфразвуковой характер имеет шум некоторых самоходных машин, например бульдозера, в шуме которого максимум энергии на частотах 16–31,5 Гц составляет 106 дБ.
Источником инфразвука являются также реактивные двигатели самолетов и ракет. При взлете турбореактивных самолетов уровни инфразвука плавно нарастают от 70–80 дБ до 87–90 дБ на частоте 20 Гц. В то же время на частотах 125–150 Гц отмечается другой максимум, поэтому такой шум все же нельзя назвать выраженным инфразвуком.
Из приведенных примеров видно, что инфразвук на рабочих местах может достигать 120 дБ и выше. При этом работники чаще подвергаются воздействию инфразвука при уровнях 90—100 дБ.
В диапазоне звука 1—30 Гц порог восприятия инфразвуковых колебаний для слухового анализатора составляет 80—120 дБ, а болевой порог – 130–140 дБ.