Читаем Оккультные тайны криминальной России полностью

В своей знаменитой дискуссии с Нильсом Бором Альберт Эйнштейн сформулировал мысленный эксперименте разлетающимися в противоположные стороны фотонами. Из квантовой механики с неизбежностью вытекало, что они связаны между собой, хотя не могло быть и речи о существовании какого-либо их энергетического взаимодействия: причём также вытекало, что эту связь можно использовать для передачи информации с бесконечной скоростью. Эйнштейн считал, что это находится в противоречии с основаниями теории относительности. Однако поскольку передача информации этим способом не связана с передачей тех форм энергии, которые имеются в виду в выражении Е=mc2, то ограничение скорости света к данному случаю не имеет отношения. Но Эйнштейн, когда он математическим путём пришёл к возможности данного процесса, ошибочно посчитал, что дальнейшее продолжение дискуссии бессмысленно: ему казалось, что всем и так вполне очевидна абсурдность этого результата квантовой механики. Уже после смерти Эйнштейна известным экспериментатором американкой китайского происхождения Ву-Цзян-Су был проведён прямой эксперимент, повторяющий условия мысленного эксперимента Эйнштейна. В результате была экспериментально обнаружена возможность передачи информации без передачи известных тогда, т. е. не глюонных форм энергии, и притом с бесконечной скоростью в физическом пространстве — времени. Так состоялось повторное открытие неклассических информационно-энергетических каналов. Первое же их открытие состоялось тысячи лет назад и было осуществлено психологическими методами.

Основной задачей биоэлектроники является исследование неклассических информационно-энергетических технических средств для передачи информации, а в последующем также энергии и объектов по этим каналам.


1.2. Комплексный характер проблем биоэлектроники и её синтетический характер


Так как биополе у биологических объектов, особенно обладающих развитой психикой, как правило, более выражено, чем у небиологических, то использование этого поля в качестве переносчика информации, энергии и объектов представляет собой комплексную проблему, которую невозможно решить без взаимодействия в частности таких научных направлений, как теория информации, теория распознавания образов, физика, психология и биология. Как говорил академик Виктор Михайлович Глушков, наше время выделило нам социальный заказ на разработку данного направления, находящегося на стыке многих наук. Социальное значение этого невозможно переоценить: достаточно сказать, что на XXVI съезде КПСС было выдвинуто требование усилить творческое взаимодействие общественных, естественных и технических наук, и этот процесс рассматривался как важнейшая тенденция развития современной науки.


1.3. Биоэлектроника учится говорить на языке будущего


Часто говорят, что новое — это хорошо забытое старое, но точнее было бы сказать, что новое в некоторых областях повторяет старое, но повторяет его на качественно более высокой основе, далеко выходя за его старые пределы. Поэтому закономерно, что когда новое заявляет о своём рождении как о свершившемся факте, то изначально для него нет и не может быть адекватного теоретического выражения. Люди ищут это адекватное выражение, первоначально используя в основном свою память, т. е. стараются описать новое старыми словами, и лишь когда убеждаются, что в это прокрустово ложе новое втиснуть не удаётся — находят для нового и новые слова, овладевают языком нового. В работе «18 Брюмера Луи Бонапарта» Карл Маркс, анализируя это явление, писал, что человек, изучающий новый язык, до тех пор не может считаться овладевшим им свободно, пока он пользуется в разговоре мысленным переводом на свой язык. Родной язык — это в данном случае язык прошлого, а новый — будущего.

Исторически так получалось, и это закономерно, что те же самые явления, к изучению которых, естественно, научным путём объективная наука подошла лишь сегодня, уже тысячи лет тому назад практически использовались йогой, пришедшей к этим возможностям совсем другим путём, причём использовались на очень высоком уровне, пока не достигнутом у нас. Поэтому древний язык йоги — санскрит является для многих исследователей в области биоэлектроники «родным» языком, подобно тому как латынь у медиков и юристов. Новый же язык, адекватный нашему времени и его возможностям, формируется в процессе продвижения вперёд современными аппаратурными методами.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже