Фермент Cas9, который входит в систему CRISPR, работает более хитро. Бактерия синтезирует направляющую РНК, которая может привести фермент к одному и только одному участку ДНК. Сохраняя в своем геноме участки, соответствующие разным направляющим РНК, бактерия способна точно идентифицировать несколько различных видов вирусов.
Поскольку Дудна была молекулярным биологом, она отлично знала, что рестриктазы поспособствовали созданию индустрии биотехнологии. Она задумалась, а нельзя ли применить сходным образом систему CRISPR. Если система может распознавать любой участок ДНК вируса, то, вероятно, Дудне и ее коллегам удастся создать направляющие РНК для определенного участка в ДНК огурца. Или морской звезды. Или человека.
Чтобы проверить эту идею, Дудна и ее сотрудники попытались вырезать фрагмент одного гена из участка ДНК медузы. (Этот ген часто используется молекулярными биологами, поскольку кодирует светящийся белок, который под микроскопом превращает клетку в зажженный фонарик.) Для своих целей Дудна с коллегами выбрала фрагмент в 20 оснований. Далее исследователи синтезировали подходящие к этому фрагменту молекулы РНК и смешали все в пробирке. Направляющая РНК и фермент Cas9 соединились и отыскали нужные гены медузы. Когда Дудна и ее коллеги проанализировали оставшуюся ДНК, то обнаружили, что разрез был нанесен точно в том месте, для которого они синтезировали РНК. Ученые провели еще четыре эксперимента, используя направляющую РНК для разных мест, и всякий раз все срабатывало как надо.
«Мы нашли способ переписать законы жизни», – позже вспоминала исследовательница[1042]
.После публикации в 2012 г. Дудной с коллегами всех деталей этого эксперимента начался взлет системы CRISPR. И группа Дудны, и другие исследователи продолжали внедрять молекулы CRISPR в живые клетки. Ученые уже могли не только вырезать фрагменты из ДНК, но и чинить ее.
В одном из таких экспериментов Фэн Чжан со своими коллегами из Института Броада, расположенного в массачусетском Кембридже, доставил пару систем CRISPR в клетки человека. Молекулы прикрепились к двум соседним целям в пределах одного гена и вырезали короткий участок ДНК между ними. Собственные ферменты клетки, занимающиеся восстановлением ДНК, схватили эти два обрезанных конца и соединили их. Другими словами, данная процедура позволила хирургически удалить кусок ДНК, не оставив ни единого шрама. А когда клетка поделилась, ее потомки унаследовали это изменение.
Вскоре исследователи начали с помощью CRISPR заменять участки в генах новыми последовательностями. Вместе с ферментами Cas9 и направляющей РНК ученые доставляли в клетку маленькие фрагменты ДНК. После того как ферменты вырезали из ДНК фрагмент, клетка заполняла разрыв внесенными кусочками ДНК.
Система CRISPR стала радикальным шагом вперед по сравнению с рестриктазами и мутагенезом под действием рентгеновского излучения. Она не давала случайных мутаций – в отличие от мутагенеза. Кроме того, отсутствовали ограничения на введение гена от одного организма в другой. Поскольку ученые уже умели синтезировать короткие фрагменты ДНК с нуля, система CRISPR потенциально позволяла вносить любое желаемое изменение в гены любого организма.
В далеких 1970-х гг. биолог Рудольф Йениш из Массачусетского технологического института впервые использовал рестриктазы, чтобы создавать генно-инженерных мышей[1043]
. Когда появились CRISPR-повторы, ученый заинтересовался, нельзя ли применить эту систему для создания новых линий мышей. Совместно с Фэн Чжаном и его аспирантами и сотрудниками он начал манипулировать с CRISPR, пока не подобрал химический протокол, обеспечивающий проникновение этих молекул в зиготы мыши. Исследователи смогли изменить примерно пять генов, доставив в клетку пять различных направляющих РНК. Затем Йениш с коллегами имплантировал модифицированные зиготы в самку мыши, где они развились в нормальных детенышей. В 80 % случаев исследовательская группа успешно получала именно те изменения, которые планировала.Новые поколения аспирантов ежедневно мысленно благодарят Йениша за то, что он облегчил им жизнь. Множество диссертаций начинаются с моделирования на мышах какого-либо заболевания или работы какого-нибудь гена. Раньше для получения линии мышей обычным способом требовалось полтора года, к тому же часто приходилось предпринимать несколько попыток, чтобы добиться нужного результата. Сейчас же, с помощью CRISPR, Йенишу требуется для этого всего лишь пять месяцев.