Чтобы клетка могла считывать хранящуюся в ДНК информацию, ей необходимы множество белков и РНК. Когда клетка делится, армия других молекул создает копию ее ДНК. Едва появившаяся на Земле жизнь должна была быть устроена проще.
По одной из версий, жизнь начиналась без ДНК и белков. Она полагалась только на молекулы РНК. Первичная клетка могла содержать несколько разных типов коротких РНК, которые помогали копировать друг друга.
Эксперименты, проведенные с РНК, показывают, как это могло происходить. Одна молекула РНК способна захватывать азотистые основания и соединять их вместе, используя вторую молекулу РНК как образец. Вторая молекула может делать то же самое по отношению к третьей. Если последняя в этом ряду РНК помогает копировать первую, то круг замыкается. У таких древних РНК два типа наследственных признаков: от предков они получают собственно генетическую информацию, а также определенную форму, которая позволяет им создавать новые молекулы.
Такая первая наследственность была довольно неточной. Иногда новые молекулы РНК содержали некоторые отличия от образца. Часто эта ошибка оказывалась фатальной, поскольку нарушалась способность молекулы РНК создавать свои копии. Но в некоторых случаях эти изменения ускоряли происходящие химические процессы. Клетки, которые размножались быстрее, обгоняли своих медлительных соперников.
Жизнь на основе РНК могла существовать в океане или приливно-отливной зоне, там же могли находиться и свободные аминокислоты. По мере того как РНК эволюционировала, она принимала все более сложные формы, и некоторые из этих структур, возможно, начали соединять аминокислоты в короткие цепочки, которые мы сейчас называем пептидами. Пептиды могли выполнять работу внутри клеток. Со временем короткие пептиды превратились в крупные, сложноустроенные белки.
Кроме того, основанная на РНК жизнь могла в процессе эволюции создать также и молекулу ДНК. Двухцепочечная молекула ДНК более стабильна, чем одноцепочечная РНК, и менее подвержена повреждениям. Когда первые организмы с ДНК копировали свои гены, они допускали меньше ошибок. Такая новообретенная точность могла способствовать созданию более сложных форм, поскольку снизился риск летальных мутаций.
Как только жизнь, основанная на ДНК, укрепилась, она заполнила всю планету. Примерно 3,5 млрд лет назад микроорганизмы разделились на две эволюционные ветви: бактерии и археи. Их почти невозможно отличить друг от друга под микроскопом, но у них есть очень важные различия в биохимических процессах. Например, бактерии и археи используют разные молекулы для построения клеточных стенок и разные молекулы для работы с генами.
Однако обе эти линии микроорганизмов оказались удивительно гибки, приспособившись жить в каждом уголке земли, где есть вода и энергия. Микроорганизмы адаптировались для жизни на поверхности океана, где они улавливают солнечный свет, на морском дне, где потребляют серу и железо, глубоко в земле, где используют энергию радиоактивного распада… По оценкам ученых, на Земле проживает около миллиона миллиардов миллиардов микроорганизмов, которые образуют триллион разных видов[344]
.И ни у кого из них не соблюдается закон Менделя.
Типичный микроорганизм, скажем, кишечная палочка (
Мы, люди, имеем возможность познакомиться со своими родителями. Микроорганизмам такого шанса никогда не представится, потому что их родители исчезают, или же, говоря другими словами, разделяются на дочерние клетки. Законы Менделя описывают, как наследственные факторы от двух родителей объединяются при образовании потомка. Для микроорганизмов это бессмысленно.
Их наследственность отличается от нашей в еще одном важном аспекте. Микроорганизмы способны получать гены разными способами. Они могут унаследовать копию генов от своих предков, так же как это делаем мы. Это называется вертикальной передачей. Кроме того, они в состоянии получать гены от других, неродственных микроорганизмов – благодаря горизонтальному переносу генов[345]
.