Читаем Операторы коммерческого учета на рынках электроэнергии. Технология и организация деятельности полностью

Хорошо известен пример оценки количества информации при равномерном законе распределения вероятности погрешностей [2]. Пусть априорно известно, что истинное значение подлежащей измерению физической величины лежит в диапазоне (X1, X2). Тогда плотность вероятности имеет вид


После выполнения измерений получено показание прибора A с погрешностью ± Δ. При этом интервал неопределенности сократился до 2Δ, а плотность распределения стала равной


Тогда из (4) и (5) следует, что количество полученной при измерении информации выглядит как


Возвращаясь к оценкам рисков с учетом выводов информационной теории измерений, можно сделать следующие заключения.

1. Риск неопределенности априорной оценки (до выполнения измерения) по своей сути и последствиям принципиально не отличается от риска неопределенности результата измерения.

2. Риск неопределенности результата измерения целесообразно определять по энтропийному значению погрешности, являющемуся единой мерой дезинформации при любых законах распределения погрешностей.

3. На практике при оценке неопределенности измерений для целей коммерческого учета в качестве интервала неопределенности можно брать границы неисключенных систематических погрешностей, которые приводятся в МВИ.


Пример 1

У бытового потребителя стоял счетчик класса точности 2,0. Потребитель установил новый счетчик класса точности 1,0. Месячное потребление постоянно и равно 300 кВтч. Тариф на электроэнергию равен 1,84 руб./кВт-ч (Москва). Какой эффект получит потребитель от снижения рисков неопределенности результатов измерений при замене счетчика?

Рискоопасные интервалы неопределенности до и после замены счетчика составляют

Δ1 = 300 ⋅ 0,02 = 6 кВт⋅ч, Δ2 = 300 ⋅ 0,01 = 3 кВт⋅ч,

а соответствующие риски

R1 = 6 ⋅ 1,84 = 11,04 руб., R2 = 3 ⋅ 1,84 = 5,52 руб.

Таким образом, ежемесячный эффект от замены счетчика при заданном потреблении с точки зрения уменьшения риска неопределенности результатов измерений составит:

Э = 11,04 – 5,52 = 5,52 руб.

Принимая, что средняя цена нового однофазного счетчика равна 600 руб., можно сделать вывод, что снижение риска при данных условиях окупится более чем за 9 лет.


Пример 2

Трехфазный потребитель потребляет в месяц 45 000 кВтч электроэнергии, которая измеряется ИС, имеющей приписанную в МВИ погрешность ±1,5 %. В результате модернизации ИС стала обладать погрешностью ±0,6 %. Определить ежемесячный эффект от снижения риска неопределенности результатов измерений, если тариф равен 0,8618 руб./кВт-ч («прочие потребители», Москва).

Рискоопасные интервалы неопределенности до и после модернизации ИС составляют

Δ1 = 45 000 ⋅ 0,015 = 675 кВт⋅ч, Δ2 = 45 000 ⋅ 0,006 = 270 кВт⋅ч,

а соответствующие риски

R1 = 675 ⋅ 0,8618 = 581,7 руб., R2 = 270 ⋅ 0,8618 = 232,6 руб.

Таким образом, ежемесячный эффект от замены счетчика при заданном потреблении с точки зрения уменьшения риска неопределенности результатов измерений составит:

Э = 11,04 – 5,52 = 5,52 руб.

Если модернизация состояла в установке нового микропроцессорного счетчика ценой 11 000 руб., то затраты окупятся за 2,6 года.

Из приведенных примеров с простейшей (грубой) оценкой эффективности инвестиций в ИС видно, что, как и следовало ожидать, чем больше потребление, измеряемое ИС, тем выше эффективность ее установки (модернизации).

Таким образом, данный инструмент может служить средством обоснования инвестиций для уменьшения риска неопределенности результатов измерений с вероятными негативными последствиями для субъекта рынка, заключающимися в возможности ущерба от переплаты (для потребителей) или недоплаты (для генерирующих компаний). При более чем одной группе точек поставки (ГТП) определение значения их общего интервала неопределенности А сводится к задаче суммирования погрешностей каждого измерительного канала, которая корректно решается также с применением информационного подхода [2].

Достаточно часто эффект от внедрения АИИС КУЭ для электросетевой компании рассчитывают по «снижению потерь», приписывая потерям какую-то стоимость. Причем это снижение обусловлено тем, что уменьшается так называемое «безучетное потребление». Информационный подход и связанное с ним понятие риска неопределенности результата измерений могут быть распространены как на определение фактических потерь, так и на их планирование.

Для реализации такого подхода следует прежде всего рассматривать расчетные и расчетно-инструментальные методы определения потерь как вид измерения, результат которого выражается не только одной цифрой («отсчетом», математическим ожиданием), но погрешностью, которая имеет в общем случае свой закон распределения и зависит при прочих равных условиях от точности используемых средств измерений.

Тогда, обозначив риск неопределенности оценки потерь до ввода в эксплуатацию АИИС КУЭ как R1W1), а тот же риск неопределенности после получения данных АИИС КУЭ как R2W2), получим эффект в виде

Э = R1W1) – R2W2),

где (ΔW1), (ΔW2) – рискоопасные интервалы неопределенности, соответственно, до и после внедрения АИИС КУЭ.

Перейти на страницу:

Все книги серии Рынок электроэнергии

Вся неправда о подключении к электросетям
Вся неправда о подключении к электросетям

Рассмотрены различные варианты технологического подключения энергопринимающих устройств потребителей электроэнергии к электросетям, в том числе: вновь смонтированных и реконструируемых электроустановок, действующих электроустановок, подключение дополнительной мощности нежилых помещений (зданий) и жилых квартир, переоформление присоединяемой мощности при переводе жилой квартиры в нежилой фонд, при разделении общей мощности объекта на отдельные мощности каждого собственника (арендатора) и т. д.Обсуждается тарифная плата за технологическое присоединение в Московском и ряде других регионов страны; дан анализ законодательных и нормативных правовых документов в этой области.Предложены практические рекомендации по решению вопросов, связанных с подключением к электрическим сетям; рассмотрена проблема несанкционированного подключения.Для юридических и физических лиц – владельцев собственности и арендаторов, перед которыми стоит задача подключения своих энергетических установок к электросетям, для инвесторов и технических заказчиков, а также для работников энергоснабжающих организаций и органов Ростехнадзора. Может быть полезна специалистам строительных, проектных, наладочных и других организаций электроэнергетического профиля.

Валентин Викторович Красник

Технические науки / Образование и наука
Операторы коммерческого учета на рынках электроэнергии. Технология и организация деятельности
Операторы коммерческого учета на рынках электроэнергии. Технология и организация деятельности

В книге рассмотрены возможности организации бизнеса в сфере коммерческого учета электроэнергии на современном этапе рыночных преобразований в отечественной энергетике. Проведен анализ законодательной базы и практики регулирования рыночных отношений в сфере коммерческого учета. Исследован предмет бизнеса операторов коммерческого учета (ОКУ) с точки зрения его эффективности и востребованности рыночным сообществом.Приведены доступные автору материалы, связанные с деятельностью ОКУ в зарубежных странах, прежде всего в Великобритании. Даны примеры развития бизнеса российских ОКУ в регионах и в общенациональном масштабе.Для специалистов в области коммерческого учета электроэнергии, менеджеров электросетевых и энергосбытовых компаний, потребителей электроэнергии, ОКУ.Может быть полезна студентам и аспирантам энергетических и экономических специальностей вузов.

Лев Константинович Осика

Технические науки
Нет соединения с сервером, попробуйте зайти чуть позже