Как известно [2], законы распределения вероятностей погрешностей в различных измерительных устройствах весьма разнообразны. Это разнообразие создает основную трудность определения эффективного значения погрешности, которое однозначно характеризовало бы абсолютную величину интервала неопределенности значения физической величины, остающуюся после данного показания А. Определенность не вносится даже при задании доверительной вероятности, т. к. произвольное значение интервала 2 Д, исходя из максимальной или среднеквадратичной погрешности, просто заменяется произвольным назначением доверительной вероятности. Подход к решению данного вопроса был заложен К. Шенноном в его информационной теории [3]. Согласно ей количество информации, получаемое в результате любого сообщения (включая измерение), равно убыли неопределенности, или энтропии
т. е. разности энтропий до и после получения сообщения (выполнения измерения). Причем исходная неопределенность, т. е. безусловная энтропия
Энтропия представляет собой своеобразный момент случайной величины с известной плотностью вероятности
Для целей подсчета информации в
На основании вышеприведенных соображений рядом авторов, например [2], делается вывод о целесообразности введения единого – информационного – подхода к любому закону распределения погрешности. Вводится понятие энтропийного значения погрешности. Под ним понимается значение погрешности с равномерным законом распределения, которое вносит такое же дезинформирующее действие, что и погрешность с данным законом распределения вероятностей.
Если погрешность с произвольным законом распределения вероятности имеет энтропию
2 = exp
а энтропийное значение погрешности, определяемое как половина интервала неопределенности, будет равно
что позволяет однозначно определить риск коммерческого учета по выражению (3).
Зависимость между энтропийным и среднеквадратичным значением погрешности
=
где коэффициент
Коэффициент
Энтропийный коэффициент равномерного распределения, характерного для погрешностей измерения приращения электроэнергии, имеет значение
Получение любой информации, в т. ч. и измерительной, теория информации трактует как устранение некоторой части неопределенности, а количество информации получается как разность неопределенности ситуаций до и после получения данного сообщения (результата измерения).
Хорошо известен пример оценки количества информации при равномерном законе распределения вероятности погрешностей [2]. Пусть априорно известно, что истинное значение подлежащей измерению физической величины лежит в диапазоне
После выполнения измерений получено показание прибора
Тогда из (4) и (5) следует, что количество полученной при измерении информации выглядит как
Возвращаясь к оценкам рисков с учетом выводов информационной теории измерений, можно сделать следующие заключения.
1. Риск неопределенности априорной оценки (до выполнения измерения) по своей сути и последствиям принципиально не отличается от риска неопределенности результата измерения.
2. Риск неопределенности результата измерения целесообразно определять по энтропийному значению погрешности, являющемуся единой мерой дезинформации при любых законах распределения погрешностей.
3. На практике при оценке неопределенности измерений для целей коммерческого учета в качестве интервала неопределенности можно брать границы неисключенных систематических погрешностей, которые приводятся в МВИ.
Пример 1