Читаем Операционная система UNIX полностью

Маска сигналов изменяется в соответствии с аргументом how, который может принимать следующие значения:

SIG_BLOCKРезультирующая маска получится путем объединения текущей маски и набора set
SIG_UNBLOCKСигналы набора set будут удалены из текущей маски
SIG_SETMASKТекущая маска будет заменена на набор set

Если указатель set равен NULL, то аргумент how игнорируется. Если аргумент oset не равен NULL, то в набор, адресованный этим аргументом, помещается текущая маска сигналов.

Функция sigpending(2) используется для получения набора заблокированных сигналов, ожидающих доставки:

#include

int sigpending(int how, sigset_t *set, sigset_t *oset);

Список сигналов, ожидающих доставки, возвращается в наборе, адресованном аргументом set.

Системный вызов sigsuspend(2) замещает текущую маску набором, адресованным аргументом set, и приостанавливает выполнение процесса до получения сигналов, диспозиция которых установлена либо на завершение выполнения процесса, либо на вызов функции-обработчика сигнала.

#include

int sigsuspend(const sigset_t *set);

При получении сигнала, завершающего выполнение процесса, возврата из функции sigsuspend(2) не происходит. Если же диспозиция полученного сигнала установлена на вызов функции-обработчика, возврат из sisuspend(2) происходит сразу после завершения обработки сигнала. При этом восстанавливается маска, существовавшая до вызова sigsuspend(2).

Заметим, что в BSD UNIX вызов signal(3) является упрощенным интерфейсом к более общей функции sigaction(2), в то время как в ветви System V signal(3) подразумевает использование старой семантики ненадежных сигналов.

В заключение для иллюстрации изложенных соображений, приведем версию функции signal, позволяющую использовать надежные сигналы. Похожая реализация используется в BSD UNIX. С помощью этой "надежной" версии мы повторим пример, рассмотренный нами выше, в измененном виде.

#include

#include

#include

#include

#include

/* Вариант "надежной" функции signal */

void (*mysignal(int signo, void (*hndlr)(int)))(int) {

 struct sigaction act, oact;

 /* Установим маску сигналов */

 act.sa_handler = hndlr;

 sigemptyset(&act.sa_mask);

 act.sa_flags = 0;

 if (signo != SIGALRM)

  act.sa_flags = SA_RESTART;

 /* Установим диспозицию */

 if (sigaction(signo, &act, &oact) < 0)

  return SIG_ERR;

 return(oact.sa_handler);

}

/* Функция-обработчик сигнала */

static void sig_hndlr(int signo) {

 /* Эта часть кода нам уже не нужна

  mysignal(SIGINT, sig_hndlr);

 */

 printf("Получен сигнал SIGINT\n");

}

main {

 /* Установим диспозицию */

 mysignal(SIGINT, sig_hndlr);

 mysignal(SIGUSR2, SIG_IGN);

 /* Бесконечный цикл */

 while (1)

  pause;

}

Заметим, что при использовании надежных сигналов, не нужно восстанавливать диспозицию в функции-обработчике при получении сигнала.

<p>Группы и сеансы</p>

После создания процесса ему присваивается уникальный идентификатор, возвращаемый системным вызовом fork(2) родительскому процессу. Дополнительно ядро назначает процессу идентификатор группы процессов (process group ID). Группа процессов включает один или более процессов и существует, пока в системе присутствует хотя бы один процесс этой группы. Временной интервал, начинающийся с создания группы и заканчивающийся, когда последний процесс ее покинет, называется временем жизни группы. Последний процесс может либо завершить свое выполнение, либо перейти в другую группу.

Многие системные вызовы могут быть применены как к единичному процессу, так и ко всем процессам группы. Например, системный вызов kill(2) может отправить сигнал как одному процессу, так и всем процессам указанной группы. Точно так же функция waitpid(2) позволяет родительскому процессу ожидать завершения конкретного процесса или любого процесса группы.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже