Сохранение цвета объясняется тем, что поверхностные химические элементы лишь частично теряют оптические фотоны. Происходит потеря оптических фотонов (и других частиц) только в тех областях химических элементов, которые соударяются. А те области элементов, которые не соударяются, частицы не теряют. Кроме того, оптические фотоны теряют только самые выступающие элементы над плоскостями поверхностей трущихся тел. Отсюда и сохранение цвета, присущего телам.
Как вы понимаете, для того, чтобы у трущихся тел начал формироваться приобретенный блеск, поверхности трущихся тел должны быть ровными. В противном случае предварительно будет происходить разрушение, откалывание частей трущихся тел, до тех пор, пока поверхности не выровняются.
Помимо этого, если величина Сил Отталкивания, возникающих в частицах соударяющихся элементов, будет превышать Силы Притяжения между элементами, сохраняющие связи между ними, может произойти разрушение трущихся тел. Чем больше давление, оказываемое трущимися телами друг на друга, тем в большей степени слои поверхностных элементов проникают друг в друга, и тем больше возрастает число соударений. Тем большее число поверхностных элементов отрывается. Если давление не велико, то число отрывающихся элементов гораздо меньше. Таким образом, именно небольшое давление – т. е. поверхностное трение – ведет не к отрыву элементов, а к отрыву частиц, и возникновению приобретенного блеска.
Чем больше скорость перемещения трущихся тел друг относительно друга, тем больше будет величина Сил Отталкивания, что приведет к тому, что в единицу времени поверхностные элементы трущихся тел будут терять больше частиц. Соответственно, приобретенный блеск возникнет быстрее и будет сильнее.
Если трущиеся тела полностью состоят из элементов-металлов или их число преобладает, то телам уже изначально присущ блеск. В процессе трения к нему прибавляется приобретенный блеск. В итоге общий блеск таких тел усиливается.
Если трущиеся тела были прозрачными (или одно из них), то в процессе трения (шлифовки) они не теряют прозрачность. Но дополнительно к ней приобретают блеск. Данное явление мы можем наблюдать на примере всевозможных видов отшлифованных драгоценных и полудрагоценных камней, или же просто прозрачных пластмасс.
Газам и жидкостям невозможно придать приобретенный блеск. Объясняется это тем, что Силы Притяжения, связывающие отдельные элементы или элементы разных молекул, малы по сравнению с Силами Отталкивания, возникающими при трении. В результате, форма тел в жидком или газообразном состоянии под давлением легко деформируется – т. е. элементы перемещаются под действием соударений друг о друга. Это не способствует возникновению «оголения» глубоких слоев в составе поверхностных элементов. В итоге, приобретенный блеск возникнуть не может.
16. Механизм действия линз. Причина аккомодации. Близорукость и дальнозоркость
Давайте займемся объяснением функционирования прибора, занимающего достаточно важное место в жизни многих людей. Как известно, очки корректируют процесс зрительного восприятия у людей с ослабленным зрением. В очках используются различные виды линз. Именно они – линзы – и являются прибором, изменяющим траекторию движения световых лучей – т. е. преломляющим их.
Не хочется сильно забегать вперед, однако следует напомнить, что в Главе, посвященной механике элементарных частиц, мы уделили большое внимание причинам и механизму изменения траектории движущихся частиц. И основными причинами изменения траектории, если вы помните, были названы Поля Притяжения и Отталкивания. Так что в этой статье мы лишь постараемся конкретным образом применить уже раскрытые нами процессы.
Помимо очков существует еще много других типов оптических приборов, где человек нашел применение линзам – лупа, бинокль, телескоп, микроскоп. Это самые основные.
Наши глаза – это тоже разновидность оптических приборов. И как подобает таким устройствам, они имеют в своем составе линзы – хрусталики. Внутри глаза, а точнее, внутри ресничного тела, находятся мышцы, которые управляют формой хрусталика – увеличивают или уменьшают его кривизну. Эти мышцы носят название – аккомодационные, поскольку изменение формы хрусталика – это акт аккомодации (приспособления). Эти мышцы связаны с хрусталиком при помощи цинновых связок. Когда мышца расслаблена, возрастает расстояние между ней и хрусталиком, и связки натягиваются – кривизна хрусталика уменьшается. Т. е. хрусталик (линза) становится более вытянутым, более плоским. Мышцы расслабляются – уменьшается ее расстояние до хрусталика, и как следствие – ослабевает натяжение цинновых связок. В итоге, кривизна хрусталика возрастает, так как расслабленные связки его не растягивают.