Если подразумеваемая волатильность значительно превышает историческую волатильность, то можно сделать вывод о том, что цена базового актива менее волатильна по сравнению с теми колебаниями, которые рынок ожидает в будущем. Для системы бэктестинга это косвенно свидетельствует о приближающемся значительном событии, которое вызовет большие движения цены. Типичными примерами таких событий являются ожидаемые решения судебных инстанций, известия о переговорах по слиянию-поглощению, одобрение новых продуктов и т. д. Если на основе таких событий не строится специальная стратегия, то такие комбинации в процессе бэктестинга следует отфильтровывать.
Если историческая волатильность значительно превышает подразумеваемую волатильность, можно сделать предположение о том, что важное событие уже произошло и привело к тому, что рынок больше не ожидает от цены базового актива каких-либо существенных движений в будущем. При бэктестинге комбинации, относящиеся к таким базовым активам, следует исключать, поскольку в большинстве случаев они не соответствуют базовым параметрам тестируемой стратегии.
5.3. Моделирование торговых заявок
После генерирования сигналов на открытие и закрытие позиций необходимо сформировать на их основе виртуальные торговые заявки и смоделировать их исполнение. Низкая ликвидность опционов может воспрепятствовать успешному исполнению ордера, сформированного торговой стратегией. В случае лимитного ордера это обернется неполным его исполнением. В случае рыночного ордера – определенным «проскальзыванием», заключающемся в худшей (чем предполагалось стратегией) цене исполнения.
Эффективный бэктестинг возможен только тогда, когда моделируемые сделки не отличаются от их исполнения в реальной торговле. Хотя некоторые различия в ценах и объемах исполнения неизбежны, задача разработчика состоит в их максимальном приближении. Неизбежность расхождений между моделируемыми и реальными сделками требует включения в алгоритм бэктестинга возможностей моделирования частичного исполнения ордеров и исполнения с использованием цен, несколько отличающихся от зафиксированных в базе исторических данных. Кроме того, цена исполнения должна корректироваться с учетом комиссий, начисляемых за исполнение торговых операций (либо комиссии должны учитываться на более позднем этапе при оценке прибыльности стратегии).
5.3.1. Моделирование объема
Как правило, в исторической базе данных имеется информация об объемах спроса и предложения. Можно было бы полагать, что объем исполнения лимитного ордера равен соответствующему объему котировки. Однако реальное исполнение редко соответствует этому объему. Текущий объем котировки может представлять собой сумму, сложенную из объемов разных торговых площадок. В таких условиях исполнение всего объема вовсе не гарантировано, поскольку сделка должна быть разбита брокером на несколько составляющих и направлена на разные площадки, что делает их полное исполнение неодновременным и сложнореализуемым. Кроме того, рынок опционов организован по принципу маркет-мейкинга, в следствии чего дилер может непрерывно изменять объемы спроса и предложения в зависимости от многих факторов: рыночной ситуации, оценки всей совокупности его собственных позиций и даже от заявок, которые ему поручено исполнять. Таким образом, объемы котировок, имеющиеся в базе данных, могут служить лишь косвенным ориентиром для оценки возможного объема исполнения лимитного ордера.
Другим косвенным указателем на возможный объем исполнения может служить дневной объем сделок по данному опциону, а также «открытый интерес» по нему. Однако и тут не все просто. Объемы опционных торгов часто носят локальный характер. Большие сделки могут происходить крайне эпизодически и не отражать реальную глубину рынка. То же относится и к размеру «открытого интереса», который может быть обусловлен несколькими крупными сделками в предшествующие моменты времени.
Чтобы приблизить результаты бэктестинга к реальности, необходимо предусмотреть возможность частичного исполнения ордеров в моделируемой торговле. Это можно сделать разными способами. Однако, какой бы способ ни был принят, все их можно свести к параметру, определяющему процент исполнения ордера. Такой параметр представляет собой функцию, аргументами которой являются: текущий объем и цены спроса и предложения; усредненный дневной объем сделок по данному инструменту (вычисленный по предшествующим дням торговли); открытый интерес; удаленность страйка от текущей цены базового актива; число дней до экспирации опциона.
Конкретный алгоритм, закладываемый в вычисление такой функции и глубина истории, по которой усредняются дневные объемы, могут быть разными. Например, сюда может быть заложен прогноз роста объемов торгов опционами при приближении даты экспирации, а также при приближении цены базового актива к страйку опциона.