В то же время и путем тех же умственных процессов являются первые ясные идеи числа. На самых ранних ступенях представление отдельных сходных предметов производит только неопределенное понятие множественности, это и теперь еще видно между австралийцами, бушменами и дамарасами, когда представляемое число превышает три или четыре. Имея такие факты перед собой, мы можем безопасно заключить, что первое ясное численное понятие было понятие двойственности, как противоположное единице. И это понятие двойственности необходимо должно было вырасти рядом с понятиями сходства и равенства, потому что невозможно признать сходство двух вещей, не усмотрев вместе с тем, что их две. С самого начала понятие числа должно было соединяться, как оно до сих пор соединяется, со сходством и равенством исчисляемых вещей. Анализируя простое счисление, мы найдем, что оно есть записывание повторявшихся впечатлений какого-нибудь рода. Чтобы эти впечатления могли быть доступны счислению, необходимо, чтобы они были более или менее сходны; и прежде, чем можно достигнуть абсолютно истинных численных результатов, нужно, чтобы единицы были абсолютно равны. Единственный путь, которым мы можем установить какое-нибудь численное сродство между вещами, не производящими на нас сходных впечатлений, состоит в том, чтобы разделить их на части, которые производили бы на нас сходные впечатления. Две несходные величины притяжения, силы, времени, веса или чего бы то ни было могут быть оценены в своих относительных итогах только посредством какой-либо мелкой единицы, которая содержится много раз в обеих величинах; если мы выражаем большую величину единицей и другую - дробью ее, мы определяем в знаменателе дроби число частей, на которые единица должна быть разделена, чтобы допустить сравнение с дробью. Справедливо, без сомнения, что посредством некоторого, очевидно нового, процесса отвлечения мы иногда прилагаем числа к неравным единицам, как, например, к утвари на аукционе или к различным животным на ферме, - прилагаем просто как ко многим отдельным вещам; но через счисление единиц такого рода нельзя получить никакого истинного результата. И в самом деле, отличительная особенность счисления вообще состоит в том, что оно совершается при гипотезе того безусловного равенства абстрактных его единиц, каким не обладают никакие реальные единицы, и что точность его результатов держится только в силу этой гипотезы. Таким образом, первые идеи числа необходимо произошли из сходных или равных величин, какие усматриваются главнейшим образом в органических предметах; и так как подобные величины, чаще всего наблюдаемые, были величины протяжения, то надо заключить, что геометрия и арифметика имеют одновременное начало.
Не только первые ясные идеи числа связаны с идеями подобия и равенства, но и первые усилия к счислению представляют то же самое сродство. Читая рассказы о различных диких племенах, мы находим, что метод счета посредством пальцев, которому еще и теперь следуют многие дети, есть первобытный метод. Помимо отдельных случаев, в которых способность к счислению не достигает даже полного числа пальцев на одной руке, есть много случаев, в которых она не простирается далее десяти, - предела простого означения посредством пальцев. Факт, что в столь многих случаях отдаленные и, по-видимому, не сообщающиеся одна с другой нации приняли десять за основание численной системы, вместе с фактом, что в остальных случаях основное число есть или пять (пальцы одной руки), или двадцать (пальцы рук и ног), сам по себе почти доказывает, что пальцы были первоначальными единицами счисления. До сих пор удержавшееся употребление слова digit, как общего названия для всякой фигуры в арифметике, многознаменательно, и даже говорят, что наше слово ten (саксонское tyn, голландское tien, немецкое zehri) означало в первоначальной своей форме две руки. Так что в первобытное время сказать, десять вещей было то же самое, что сказать: две руки вещей Из всех этих свидетельств достаточно ясно, что самый ранний способ сообщения идеи какого-нибудь числа вещей состоял в поднятии стольких пальцев, сколько было вещей, т. е. в употреблении символа, который был равен, в отношении множественности, означаемой группе. Без сомнения, сильным подтверждением для этого вывода служит новейший факт, что наши солдаты самобытно усвоили себе этот прием в сношениях с турками во время Крымской войны. Надо заметить, что в этом новом сочетании понятия равенства с понятием множественности, посредством которого делаются первые шаги в счислении, мы можем видеть одно из самых ранних соприкосновений между расходящимися отраслями науки, - соприкосновений, которые впоследствии постоянно встречаются.