Команда показывает, что напряжение приложено между узлами 1
и 0 и его форма задана отрезками прямых (PWL). Параметры в круглых скобках представляют собой пару значений: момент времени — напряжение. В данном примере в момент t=0 V=0; затем при t=10 мкс V=1 В; при 10 мс V=1 В. Изменение напряжения между двумя соседними моментами времени осуществляется по отрезку прямой. Посмотрите, как выглядит временная функция напряжения. Теперь можно записать входной файл:Switch Closing in RL Circuit
V 1 0 PWL (0,01us,1V 10ms, 1V)
R 1 2 100
L 2 0 0.1H
.TRAN 1ms 10ms
.PROBE
.END
Первое значение, показанное в команде .TRAN,
является значением шага в распечатке. Выберите его равным приблизительно одной десятой части второго значения, которое указывает длительность анализируемого процесса.Выполните анализ и получите график I(R). Обратите внимание, что ток, как и ожидалось, нарастает по экспоненте, достигая установившегося значения в 10 мА. Используйте режим курсора, чтобы определить начальную скорость изменения тока Δi
|Δt. Для определения отношения приращений вы можете выбрать временной интервал приблизительно в 50 мкс. Убедитесь, что в начале процесса Δi|Δt=10 А/с. Если ток будет увеличиваться с этой скоростью вплоть до установившегося значения 10 мА, то когда он этого значения достигнет?Как вы знаете, через время, равное постоянной времени τ, ток должен достигнуть 0,632 от установившегося значения. Проверьте по графику, что это значение (6,32 мА) достигается через t
=1 мс. Сверьте полученный вами график с рис. 6.2.Рис. 6.2. График тока для схемы на рис. 6.1
Если вы впервые сталкиваетесь с понятием постоянной времени, получите график при других параметрах, что поможет вам лучше разобраться с этой концепцией. Удалите график тока и получите графики трех напряжений: V(1), (V)2 и V(1,2). Напряжение V(1,2) является более коротким обозначением разности V(1)–V(2). Установив начальную задержку по оси времени в 10 мс вместо 1 мс, мы лучше увидим начальный участок процесса после замыкания ключа. Что представляют собой кривые?
Приложенное напряжение V(1) мгновенно повышается от нуля до 1 В, а напряжение на катушке индуктивности V(2) начинается при значении в 1 В в момент t
=0. Можете ли вы с помощью второго закона Кирхгофа (устанавливающего связь напряжений) объяснить почему? Падение напряжения на резисторе V(1, 2) имеет, очевидно, график, подобный графику тока, поскольку vR=Ri. Так как всегда vR+vL=V (V — приложенное напряжение), то графики vR(t) и vL(t) являются зеркальными отображениями. Графики этих зависимостей показаны на рис. 6.3.Рис. 6.3. Графики напряжений на элементах схемы на рис. 6.1
Переходной процесс при ненулевых начальных условиях
В схеме рис. 6.4 до момента t
=0 ключ разомкнут. После замыкания ключа начинается переходной процесс с ненулевыми начальными условиями. Чтобы рассчитать переходной процесс на PSpice и в этом случае, необходимо проделать некоторую предварительную работу.Рис. 6.4. Схема с ненулевыми начальными условиями
Проведем в качестве примера расчет при следующих значениях параметров элементов: R
1=15 Ом, R=5 Ом, L=0,5 мГн и V=10 В. До замыкания ключа ток равенПосле замыкания ключа ток нарастает по экспоненте, как и в предыдущем примере. При начальном токе в 0,5 А входной файл выглядит следующим образом:
Transient with Nonzero Initial Current
V 1 0 PWL(0, 2.5V 1us, 10V 1ms, 10V)
R 1 2 5
L 2 0 0.5mH IC=0.5A
.TRAN 10us 1ms
.PROBE
.END
Отметим, что команда для L
содержит запись IC=0,5 А, с помощью которой задается начальное значение тока в катушке. Однако этого недостаточно для правильного отображения процесса. Обратим внимание, что запись для выходного напряжения дает начальную пару значений для PWL 0; 2,5 В. Что это означает? При токе i=0,5 А напряжение на резисторе R составляет vR=Ri=0,5·5=2,5 В. При замыкании ключа сопротивление R1 исключается из схемы, но поскольку ток в схеме (и напряжение на R) не может мгновенно измениться, то, в соответствии со вторым законом Кирхгофа, мгновенно изменяется напряжение на катушке. Однако PSpice позволяет учесть лишь начальный ток в катушке, а напряжение на ней в начале анализа всегда равно нулю. Чтобы обеспечить ток в 0,5 А, мы должны принять в начальный момент напряжение на источнике равным 2,5 В, что и сделано при описании источника PWL.