Читаем Организация связи в сетях LTE полностью

Отметим, что АУ может использовать как фиксированный частотный диапазон (используются смежные ресурсные блоки, т.е. смежные поднесущие), так и распределенный – так называемый режим скачкообразной перестройки частоты (FH). В последнем случае для каждого слота восходящего канала используется новый ресурсный блок из доступной ресурсной сетки. Параметры перестройки частоты задаются сетевым оборудованием и сообщаются как при инициализации абонентского устройства в сети, так и по ходу работы в канале управления. В случае распределенного способа информация от каждого абонента расположена во всем спектре сигнала (рис.22), поэтому данный способ устойчив к частотно-избирательному замиранию. С другой стороны, при локализованном способе распределения возможно определить полосу, в которой для данного абонента достигается максимальная устойчивость канала к замираниям. Поскольку области замирания сигнала для всех абонентов различны, то можно достичь общую максимальную эффективность использования радиоканала. Однако это требует непрерывного сканирования частотной характеристики канала для каждого устройства и организации функции диспетчеризации.




Рис. 22. Способы распределения поднесущих в SC-FDMA


Помимо собственно информации, генерируемой функциями верхних уровней, в восходящем канале передаются опорные сигналы. Их назначение – помочь приемнику БС настроиться на определенный передатчик АУ. Кроме того, эти сигналы позволяют оценить качество канала, что используется в БС при диспетчеризации ресурсов. Опорные сигналы в восходящем канале бывают двух видов – так называемые "демодулированные" и зондовые (sounding). Демодулированные опорные сигналы аналогичны опорным сигналам нисходящего канала. Они передаются на постоянной основе. Так, в общем информационном канале последовательность демодулированного опорного сигнала передается в четвертом SC-FDMA-символе каждого слота при стандартном СР. Зондовые сигналы апериодичны. Их основное назначение – дать БС возможность оценить качество канала, если передача еще не ведется.


В изложении принципа формирования сигнала SC-FDMA очень много путаницы. В одних источниках, в частности в [2] утверждается, что до ДПФ сигнал находится в частотной области, а после ДПФ формируется аналоговый сигнал, т.е. сигнал во временной области, и что длительность модуляционных импульсов в SC-FDMA символе должна быть в N раз короче, чем в OFDM символе, где N – количество доступных поднесущих БС.

В других источниках, в частности в [4] утверждается, что до ДПФ мы имеем сигнал во временной области, а после ДПФ происходит преобразование в частотную область. В этой же статье утверждается также, что скорость модуляционных символов в М раз больше скорости SC-FDMA символов, где М – количество поднесущих в выделенных АУ ресурсных блоках. Кому верить?

С одной стороны, на вход схемы формирования SC-FDMA приходит тот же поток комплексных чисел, что и при формировании OFDM сигнала, т. е. амплитуда и фаза модуляционного символа, а это представление сигнала в частотной области. То есть, после ДПФ мы должны получить представление сигнала во временной области. Тогда после ОДПФ мы получим представление сигнала в частотной области, а нам нужно во временной, так как добавление СР производится с отсчетами во временной области, и на вход ЦАП нужно подавать отсчеты во временной области. Если взять за основу, что на выходе ОДПФ мы имеем представление сигнала во временной области, то тогда на входе ДПФ модуляционные символы представлены также во временной области, что также не соответствует действительности. Единственное, что при этом соответствует действительности, это то, что после всех преобразований в передатчике и приемнике, на выходе приемника получаем модуляционные символы, представленные в той же форме, в которой они подавались на вход ДПФ в передатчике. Как видим, понятия представления сигналов во временной и частотной области при цифровой обработке сигналов достаточно условны. Но, поскольку в эфир излучается аналоговый сигнал во временной области, то будем считать, что на выходе ОДПФ мы имеем представление сигнала во временной области, и, соответственно, на входе ДПФ мы также имеем представление сигнала во временной области. Остается разобраться со скоростью передачи модуляционных символов.

С помощью программы MATLAB проведен небольшой эксперимент по формированию сигналов OFDM и SCFDMA. В соответствии с рис. 17 взята последовательность из первых 4-х символов x=[1+1i, -1-1i, -1+1i, 1-1i], т.е. предполагается, что имеется М=4 поднесущие.

Перейти на страницу:

Похожие книги

100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука